Update README.md
Browse files
README.md
CHANGED
|
@@ -44,22 +44,23 @@ During the code generation step, we use early stopping on the `}\n}` sequence to
|
|
| 44 |
The early stopping method, post-processing steps, and evaluation code are available in the example below.
|
| 45 |
|
| 46 |
```python
|
| 47 |
-
import
|
| 48 |
-
import jsonlines
|
| 49 |
import re
|
| 50 |
-
|
|
|
|
|
|
|
|
|
|
| 51 |
from transformers import (
|
| 52 |
AutoTokenizer,
|
| 53 |
AutoModelForCausalLM,
|
| 54 |
StoppingCriteria,
|
| 55 |
StoppingCriteriaList,
|
| 56 |
)
|
| 57 |
-
from
|
| 58 |
from mxeval.evaluation import evaluate_functional_correctness
|
| 59 |
-
|
| 60 |
|
| 61 |
class StoppingCriteriaSub(StoppingCriteria):
|
| 62 |
-
|
| 63 |
def __init__(self, stops, tokenizer):
|
| 64 |
(StoppingCriteria.__init__(self),)
|
| 65 |
self.stops = rf"{stops}"
|
|
@@ -75,16 +76,8 @@ class StoppingCriteriaSub(StoppingCriteria):
|
|
| 75 |
|
| 76 |
|
| 77 |
def generate(problem):
|
| 78 |
-
|
| 79 |
-
|
| 80 |
-
stopping_criteria = StoppingCriteriaList(
|
| 81 |
-
[
|
| 82 |
-
StoppingCriteriaSub(
|
| 83 |
-
stops= "\n}\n", tokenizer=tokenizer
|
| 84 |
-
)
|
| 85 |
-
]
|
| 86 |
-
)
|
| 87 |
-
|
| 88 |
|
| 89 |
problem = tokenizer.encode(problem, return_tensors="pt").to('cuda')
|
| 90 |
sample = model.generate(
|
|
@@ -99,22 +92,20 @@ def generate(problem):
|
|
| 99 |
)
|
| 100 |
|
| 101 |
answer = tokenizer.decode(sample[0], skip_special_tokens=True)
|
| 102 |
-
|
| 103 |
return answer
|
| 104 |
|
| 105 |
-
def clean_asnwer(code):
|
| 106 |
|
|
|
|
| 107 |
# Clean comments
|
| 108 |
code_without_line_comments = re.sub(r"//.*", "", code)
|
| 109 |
code_without_all_comments = re.sub(
|
| 110 |
r"/\*.*?\*/", "", code_without_line_comments, flags=re.DOTALL
|
| 111 |
)
|
| 112 |
-
|
| 113 |
#Clean signatures
|
| 114 |
lines = code.split("\n")
|
| 115 |
for i, line in enumerate(lines):
|
| 116 |
if line.startswith("fun "):
|
| 117 |
-
return "\n".join(lines[i + 1
|
| 118 |
|
| 119 |
return code
|
| 120 |
|
|
@@ -123,10 +114,9 @@ model_name = "JetBrains/CodeLlama-7B-Kexer"
|
|
| 123 |
dataset = load_dataset("jetbrains/Kotlin_HumanEval")['train']
|
| 124 |
problem_dict = {problem['task_id']: problem for problem in dataset}
|
| 125 |
|
| 126 |
-
model = AutoModelForCausalLM.from_pretrained(model_name,torch_dtype=torch.bfloat16).to('cuda')
|
| 127 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 128 |
|
| 129 |
-
|
| 130 |
output = []
|
| 131 |
for key in tqdm(list(problem_dict.keys()), leave=False):
|
| 132 |
problem = problem_dict[key]["prompt"]
|
|
@@ -134,7 +124,6 @@ for key in tqdm(list(problem_dict.keys()), leave=False):
|
|
| 134 |
answer = clean_asnwer(answer)
|
| 135 |
output.append({"task_id": key, "completion": answer, "language": "kotlin"})
|
| 136 |
|
| 137 |
-
|
| 138 |
output_file = f"answers"
|
| 139 |
with jsonlines.open(output_file, mode="w") as writer:
|
| 140 |
for line in output:
|
|
@@ -148,6 +137,17 @@ evaluate_functional_correctness(
|
|
| 148 |
problem_file=problem_dict,
|
| 149 |
)
|
| 150 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 151 |
```
|
| 152 |
|
| 153 |
|
|
|
|
| 44 |
The early stopping method, post-processing steps, and evaluation code are available in the example below.
|
| 45 |
|
| 46 |
```python
|
| 47 |
+
import json
|
|
|
|
| 48 |
import re
|
| 49 |
+
|
| 50 |
+
from datasets import load_dataset
|
| 51 |
+
import jsonlines
|
| 52 |
+
import torch
|
| 53 |
from transformers import (
|
| 54 |
AutoTokenizer,
|
| 55 |
AutoModelForCausalLM,
|
| 56 |
StoppingCriteria,
|
| 57 |
StoppingCriteriaList,
|
| 58 |
)
|
| 59 |
+
from tqdm import tqdm
|
| 60 |
from mxeval.evaluation import evaluate_functional_correctness
|
| 61 |
+
|
| 62 |
|
| 63 |
class StoppingCriteriaSub(StoppingCriteria):
|
|
|
|
| 64 |
def __init__(self, stops, tokenizer):
|
| 65 |
(StoppingCriteria.__init__(self),)
|
| 66 |
self.stops = rf"{stops}"
|
|
|
|
| 76 |
|
| 77 |
|
| 78 |
def generate(problem):
|
| 79 |
+
criterion = StoppingCriteriaSub(stops="\n}\n", tokenizer=tokenizer)
|
| 80 |
+
stopping_criteria = StoppingCriteriaList([criterion])
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 81 |
|
| 82 |
problem = tokenizer.encode(problem, return_tensors="pt").to('cuda')
|
| 83 |
sample = model.generate(
|
|
|
|
| 92 |
)
|
| 93 |
|
| 94 |
answer = tokenizer.decode(sample[0], skip_special_tokens=True)
|
|
|
|
| 95 |
return answer
|
| 96 |
|
|
|
|
| 97 |
|
| 98 |
+
def clean_asnwer(code):
|
| 99 |
# Clean comments
|
| 100 |
code_without_line_comments = re.sub(r"//.*", "", code)
|
| 101 |
code_without_all_comments = re.sub(
|
| 102 |
r"/\*.*?\*/", "", code_without_line_comments, flags=re.DOTALL
|
| 103 |
)
|
|
|
|
| 104 |
#Clean signatures
|
| 105 |
lines = code.split("\n")
|
| 106 |
for i, line in enumerate(lines):
|
| 107 |
if line.startswith("fun "):
|
| 108 |
+
return "\n".join(lines[i + 1:])
|
| 109 |
|
| 110 |
return code
|
| 111 |
|
|
|
|
| 114 |
dataset = load_dataset("jetbrains/Kotlin_HumanEval")['train']
|
| 115 |
problem_dict = {problem['task_id']: problem for problem in dataset}
|
| 116 |
|
| 117 |
+
model = AutoModelForCausalLM.from_pretrained(model_name, torch_dtype=torch.bfloat16).to('cuda')
|
| 118 |
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 119 |
|
|
|
|
| 120 |
output = []
|
| 121 |
for key in tqdm(list(problem_dict.keys()), leave=False):
|
| 122 |
problem = problem_dict[key]["prompt"]
|
|
|
|
| 124 |
answer = clean_asnwer(answer)
|
| 125 |
output.append({"task_id": key, "completion": answer, "language": "kotlin"})
|
| 126 |
|
|
|
|
| 127 |
output_file = f"answers"
|
| 128 |
with jsonlines.open(output_file, mode="w") as writer:
|
| 129 |
for line in output:
|
|
|
|
| 137 |
problem_file=problem_dict,
|
| 138 |
)
|
| 139 |
|
| 140 |
+
with open(output_file + '_results.jsonl') as fp:
|
| 141 |
+
total = 0
|
| 142 |
+
correct = 0
|
| 143 |
+
for line in fp:
|
| 144 |
+
sample_res = json.loads(line)
|
| 145 |
+
print(sample_res)
|
| 146 |
+
total += 1
|
| 147 |
+
correct += sample_res['passed']
|
| 148 |
+
|
| 149 |
+
print(f'Pass rate: {correct/total}')
|
| 150 |
+
|
| 151 |
```
|
| 152 |
|
| 153 |
|