nielsr HF Staff commited on
Commit
68b9b65
·
verified ·
1 Parent(s): b1dcda3

Add missing metadata to dataset card

Browse files

This PR adds missing metadata to the dataset card, including the task category, license, and a description of the dataset's purpose. It also includes a placeholder for a paper link once it is available. It clarifies the dataset's use in the context of scene graph generation.

Files changed (1) hide show
  1. README.md +30 -0
README.md CHANGED
@@ -19,9 +19,39 @@ dataset_info:
19
  num_examples: 5000
20
  download_size: 781301448
21
  dataset_size: 807872243.0
 
 
 
22
  configs:
23
  - config_name: default
24
  data_files:
25
  - split: train
26
  path: data/train-*
27
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
19
  num_examples: 5000
20
  download_size: 781301448
21
  dataset_size: 807872243.0
22
+ task_categories:
23
+ - image-text-to-text
24
+ license: apache-2.0 # Please replace with the actual license.
25
  configs:
26
  - config_name: default
27
  data_files:
28
  - split: train
29
  path: data/train-*
30
  ---
31
+
32
+ This dataset, derived from VG150, provides image-text pairs for scene graph generation. Each example includes an image, an "open" prompt, a "close" prompt, a list of objects, and their relationships. It's designed to be used for training and evaluating models that generate scene graphs from images and textual prompts.
33
+
34
+
35
+ This dataset is used in the paper [R1-SGG: Compile Scene Graphs with Reinforcement Learning](PLACEHOLDER_PAPER_LINK). Please replace PLACEHOLDER_PAPER_LINK with the actual link once available.
36
+
37
+ The dataset is structured as follows:
38
+
39
+ * **image_id:** Unique identifier for the image.
40
+ * **image:** The image itself.
41
+ * **prompt_open:** An open-ended prompt related to the image.
42
+ * **prompt_close:** A more specific prompt related to the image.
43
+ * **objects:** A list of objects present in the image.
44
+ * **relationships:** A description of the relationships between the objects.
45
+
46
+ **Data Usage:**
47
+
48
+ The dataset can be loaded using the `datasets` library:
49
+
50
+ ```python
51
+ from datasets import load_dataset
52
+
53
+ db_train = load_dataset("JosephZ/vg150_train_sgg_prompt")["train"]
54
+ db_val = load_dataset("JosephZ/vg150_val_sgg_prompt")["train"]
55
+ ```
56
+
57
+ (Further instructions from the original README regarding training and inference can be included here)