Q 200cm ³ of an agreeus Solution of a protein contains 1.26g of the protein. the Darnothic presence of such a solutionisat 300k is found to be 2.57 × 10 ⁻³ box. calculate the modes mass of the protein The contains of the protein = 200 × 10 ⁻³ L 2.57 × 10 ⁻³ = (1.26 / Mg) × 0.083 × 300 MB = 4.26 × 0.08 × 300 The 2.57 × 10 ⁻³ has the solution of a protein the Darnothic The Darnothic The Darnothic The Darnothic The Solution of the protein the Darnothic The Darnothic The Solution of the Protein the Darnothic T	S S Sw	by knowing WB. V, R, T. and TT molecular mass of inhanoun solute 'MB' len be delapmined. Note: - of R = 0.0821 L who k-1 mol-1 Vin L, Tt in about of R = 0.083 L bas k-1 mol-1 St wit [of R = 8.314 J K-1 mol-1 St wit [Ni R = 8.314 J K-1 mol-1 Ni R = 8.314 J K-1 m
200 of Scotomic. Rypatemi and hypotonic Sotopic: - Selutions lianing similar osmotic pressure. Known as seater sotomic Eq:- 0.9% Nach is hotomic with human blood. when two insternic solution are separated	A STATE OF THE STA	Quellate the semotic presure in pourals exculed by a solution prepared by desirating 1:09 of polymer of moder mass 185,000 in 450 ml of water at 37°C? To = (Ms) x et