|
|
import torch
|
|
|
from torch import nn
|
|
|
from model import get_model
|
|
|
import glob
|
|
|
import os
|
|
|
import torch.nn.functional as F
|
|
|
from torchvision import transforms
|
|
|
import cv2
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
transform = transforms.Compose([
|
|
|
transforms.ToTensor(),
|
|
|
])
|
|
|
|
|
|
|
|
|
def cosine_similarity(v, M):
|
|
|
|
|
|
v_norm = np.linalg.norm(v)
|
|
|
|
|
|
|
|
|
M_norm = np.linalg.norm(M, axis=0)
|
|
|
|
|
|
|
|
|
dot_product = np.dot(v, M)
|
|
|
|
|
|
|
|
|
similarity = dot_product / (v_norm * M_norm)
|
|
|
|
|
|
return similarity
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
weights_path = 'weights/epoch6_loss_8.045684943666645.pth'
|
|
|
img_dir = r'J:\experiment_data\0.1 test\test_img'
|
|
|
target_img_index = 500
|
|
|
|
|
|
img_path = glob.glob(img_dir + os.sep + '*.png')
|
|
|
model = get_model()
|
|
|
model.load_state_dict(torch.load(weights_path))
|
|
|
model.eval()
|
|
|
|
|
|
vectors = []
|
|
|
for i in img_path:
|
|
|
print(i)
|
|
|
img = cv2.imread(i, -1)
|
|
|
img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
|
|
img = transform(img).unsqueeze(0)
|
|
|
vector = model(img)
|
|
|
vector = vector.squeeze().reshape(-1).detach().numpy()
|
|
|
vector = vector.tolist()
|
|
|
vectors.append(vector)
|
|
|
vectors = np.array(vectors, dtype=np.float32).transpose()
|
|
|
print(f'特征矩阵维度是:\n {vectors.shape}')
|
|
|
|
|
|
target_img = cv2.imread(img_path[target_img_index], -1)
|
|
|
target_img = cv2.cvtColor(target_img, cv2.COLOR_BGR2RGB)
|
|
|
target_img = transform(target_img).unsqueeze(0)
|
|
|
target_vector = model(target_img)
|
|
|
target_vector = target_vector.squeeze().reshape(1, -1).detach().numpy()
|
|
|
target_vector = target_vector.astype(np.float32)
|
|
|
|
|
|
cos_similarity = cosine_similarity(target_vector, vectors)
|
|
|
sorted_indices = np.argsort(-cos_similarity)
|
|
|
v_sorted = np.take(cos_similarity, sorted_indices)
|
|
|
|
|
|
|
|
|
print(f'排序向量维度:\n {sorted_indices.shape}')
|
|
|
|
|
|
print(f'前10的相似度:\n {v_sorted[0, :10]}')
|
|
|
print(f'前10的图像:\n {sorted_indices[0, :10]}')
|
|
|
|
|
|
print(f'最后10个的相似度:\n {v_sorted[0, -10:]}')
|
|
|
print(f'最后10个的图像:\n {sorted_indices[0, -10:]}')
|
|
|
|
|
|
|
|
|
|