import torch from torch import nn from model import get_model import glob import os import torch.nn.functional as F from torchvision import transforms import cv2 import numpy as np transform = transforms.Compose([ transforms.ToTensor(), ]) def cosine_similarity(v, M): # 计算向量v的模 v_norm = np.linalg.norm(v) # 计算矩阵M每一列的模 M_norm = np.linalg.norm(M, axis=0) # 计算向量v和矩阵M每一列的点积 dot_product = np.dot(v, M) # 计算余弦相似度 similarity = dot_product / (v_norm * M_norm) return similarity if __name__ == '__main__': weights_path = 'weights/epoch6_loss_8.045684943666645.pth' img_dir = r'J:\experiment_data\0.1 test\test_img' target_img_index = 500 img_path = glob.glob(img_dir + os.sep + '*.png') model = get_model() model.load_state_dict(torch.load(weights_path)) model.eval() vectors = [] for i in img_path: print(i) img = cv2.imread(i, -1) img = cv2.cvtColor(img, cv2.COLOR_BGR2RGB) img = transform(img).unsqueeze(0) vector = model(img) vector = vector.squeeze().reshape(-1).detach().numpy() vector = vector.tolist() vectors.append(vector) vectors = np.array(vectors, dtype=np.float32).transpose() print(f'特征矩阵维度是:\n {vectors.shape}') target_img = cv2.imread(img_path[target_img_index], -1) target_img = cv2.cvtColor(target_img, cv2.COLOR_BGR2RGB) target_img = transform(target_img).unsqueeze(0) target_vector = model(target_img) target_vector = target_vector.squeeze().reshape(1, -1).detach().numpy() target_vector = target_vector.astype(np.float32) cos_similarity = cosine_similarity(target_vector, vectors) sorted_indices = np.argsort(-cos_similarity) v_sorted = np.take(cos_similarity, sorted_indices) # print(f'相似度向量:\n {v_sorted}') # print(f'相似度序号向量:\n {sorted_indices}') print(f'排序向量维度:\n {sorted_indices.shape}') print(f'前10的相似度:\n {v_sorted[0, :10]}') print(f'前10的图像:\n {sorted_indices[0, :10]}') print(f'最后10个的相似度:\n {v_sorted[0, -10:]}') print(f'最后10个的图像:\n {sorted_indices[0, -10:]}')