File size: 7,935 Bytes
0e0f1a4
d80f5dc
0e0f1a4
 
 
 
 
 
 
 
 
 
0f1c603
0e0f1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
6f88df2
 
 
 
 
0e0f1a4
 
0f1c603
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0e0f1a4
 
 
0f1c603
 
 
0e0f1a4
 
 
 
 
0f1c603
0e0f1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1c603
0e0f1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0f1c603
0e0f1a4
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
f2b5ba9
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
---
license: cc-by-4.0
task_categories:
- video-tracking
tags:
- video-object-segmentation
- single-object-tracking
- point-tracking
- computer-vision
- benchmark
language:
- en
pretty_name: TAG
arxiv: 2510.18822
configs:
- config_name: default
  data_files: "*.json"
  sep: "\t"
---
# SAM 2++: Tracking Anything at Any Granularity

πŸ”₯ [Evaluation Server](TODO) | 🏠 [Homepage](https://tracking-any-granularity.github.io/) | πŸ“„ [Paper](https://arxiv.org/abs/2510.18822) | πŸ”— [GitHub](https://github.com/MCG-NJU/SAM2-Plus)

## Download
We recommend using `huggingface-cli` to download:
```
pip install -U "huggingface_hub[cli]"
huggingface-cli download MCG-NJU/Tracking-Any-Granularity --repo-type dataset --local-dir ./Tracking-Any-Granularity --local-dir-use-symlinks False --max-workers 16
```

## πŸ”₯ Latest News

- **[2024-10-27]** To provide a benchmark for the task of language reference, such as 'Tracking by natural language specification' and 'Referring video object segmentation', we added the language description of the object in meta json.
- **[2024-10-24]** [SAM 2++ model](https://github.com/MCG-NJU/SAM2-Plus) and part of [Tracking-Any-Granularity dataset](https://huggingface.co/datasets/MCG-NJU/tracking-any-granularity) are released. Check out the [project page](https://tracking-any-granularity.github.io/) for more details.

## Dataset Summary

**T**racking-**A**ny-**G**ranularity (TAG) is a comprehensive dataset for training our unified model, termed Tracking-Any-Granularity (TAG), with annotations across three granularities: segmentation masks, bounding boxes, and key points.

  <table  align="center">
    <tbody>
      <tr>
        <td><img  width="220" src="assets/data/00025.gif"/></td>
        <td><img  width="220" src="assets/data/00076.gif"/></td>
        <td><img  width="220" src="assets/data/00045.gif"/></td>
      </tr>
    </tbody>
  </table>

  <table  align="center">
    <tbody>
      <tr>
        <td><img  width="220" src="assets/data/00102.gif"/></td>
        <td><img  width="220" src="assets/data/00103.gif"/></td>
        <td><img  width="220" src="assets/data/00152.gif"/></td>
      </tr>
    </tbody>
  </table>

  <table  align="center">
    <tbody>
      <tr>
        <td><img  width="220" src="assets/data/00227.gif"/></td>
        <td><img  width="220" src="assets/data/00117.gif"/></td>
        <td><img  width="220" src="assets/data/00312.gif"/></td>
      </tr>
    </tbody>
  </table>


## Dataset Description

Our dataset includes **a wide range of video sources**, demonstrating strong diversity and serving as a solid benchmark for evaluating tracking performance. Each video sequence is annotated with **18 attributes representing different tracking challenges**, which can appear simultaneously in the same video. Common challenges include motion blur, deformation, and partial occlusion, reflecting the dataset’s high difficulty. Most videos contain multiple attributes, indicating the dataset’s coverage of complex and diverse tracking scenarios.

![TAG dataset](assets/4-attr.png?raw=true)

## Benchmark Results

We evaluated many representative trackers on the valid and test splits of our dataset:

*video object segmentation*
| Model                         | π’₯ & β„± | π’₯ | β„± | π’₯ & β„± | π’₯ | β„± |
|-------------------------------|---------|---------|---------|---------|---------|---------|
| STCN                           | 70.4    | 65.9    | 75      | 76.2    | 72.2    | 80.2    |
| AOT-SwinB                      | 78.1    | 73.1    | 83.2    | 80.9    | 76.4    | 85.4    |
| DeAOT-SwinB                    | 79.6    | 74.8    | 84.4    | 81.6    | 77.3    | 85.9    |
| XMem                           | 74.4    | 70.1    | 78.6    | 75.7    | 71.8    | 79.6    |
| DEVA                           | 77.9    | 73.1    | 82.6    | 82.1    | 78.0      | 86.1    |
| Cutie-base+                    | 79.0      | 75.0      | 83.0      | 83.8    | 80.0      | 87.7    |
| Cutie-base+ w/MEGA  | 80.3    | 76.5    | 84.2    | 84.9    | 81.3    | 88.5    |
| OneVOS                         | 80.1    | 75.2    | 85.1    | 81      | 76.5    | 85.4    |
| OneVOS w/MOSE       | 79.3    | 74.3    | 84.3    | 82.4    | 78      | 86.7    |
| JointFormer                    | 76.6    | 72.8    | 80.5    | 79.1    | 75.5    | 82.7    |
| SAM2++                           | 87.4    | 84.2    | 90.7    | 87.9    | 84.9    | 90.9    |

*single object tracking*
| Model                        | AUC | P_Norm | P | AUC | P_Norm | P |
|------------------------------|---------|---------|---------|---------|---------|---------|
| OSTrack                       | 74.8    | 84.4    | 72.7    | 69.7    | 78.8    | 69.9    |
| SimTrack                      | 71.1    | 80.5    | 68.1    | 64.1    | 72.4    | 60.5    |
| MixViT w/ConvMAE     | 72.1    | 80.9    | 70.5    | 69.7    | 78.2    | 70.2    |
| DropTrack                     | 76.8    | 86.9    | 74.4    | 71.1    | 80.5    | 72.1    |
| GRM                           | 73.1    | 82.3    | 71.4    | 69.1    | 77.4    | 69.1    |
| SeqTrack                      | 77.0      | 85.8    | 76.1    | 69.8    | 79.4    | 71.5    |
| ARTrack                       | 76.8    | 85.8    | 75.7    | 71.1    | 78.7    | 70.9    |
| ARTrack-V2                    | 76.3    | 85.5    | 74.3    | 71.8    | 79.5    | 71.9    |
| ROMTrack                      | 75.6    | 85.4    | 73.7    | 71.3    | 80.8    | 72.8    |
| HIPTrack                      | 78.2    | 88.5    | 76.6    | 71.4    | 81      | 72.5    |
| LoRAT                         | 75.1    | 84.8    | 74.4    | 70.5    | 79.7    | 68.7    |
| SAM2++                          | 80.7    | 89.7    | 77.8    | 78      | 85.7    | 81.5    |

*point tracking*
| Model      | Acc | Acc |
|------------|---------|---------|
| pips       | 19.0      | 19.8    |
| pips++     | 20.9    | 23.1    |
| CoTracker  | 23.3    | 22.3    |
| CoTracker3 | 29.6    | 29.1    |
| TAPTR      | 23.7    | 23.8    |
| TAPIR      | 21.3    | 24.6    |
| LocoTrack  | 25.2    | 30.2    |
| Track-On   | 24.8    | 25.8    |
| SAM2++       | 35.3    | 37.7    |


## Dataset Structure

```
<ImageSets>
β”‚
β”œβ”€β”€ valid.txt
β”œβ”€β”€ test.txt

<valid/test.tar.gz>
β”‚
β”œβ”€β”€ Annotations
β”‚ β”‚ 
β”‚ β”œβ”€β”€ <video_name_1>
β”‚ β”‚ β”œβ”€β”€ 00000.png
β”‚ β”‚ β”œβ”€β”€ 00001.png
β”‚ β”‚ └── ...
β”‚ β”‚ 
β”‚ β”œβ”€β”€ <video_name_2>
β”‚ β”‚ β”œβ”€β”€ 00000.png
β”‚ β”‚ β”œβ”€β”€ 00001.png
β”‚ β”‚ └── ...
β”‚ β”‚ 
β”‚ β”œβ”€β”€ <video_name_...>
β”‚
β”œβ”€β”€ Points
β”‚ β”‚ 
β”‚ β”œβ”€β”€ <video_name_1>.npz
β”‚ β”œβ”€β”€ <video_name_2>.npz
β”‚ β”œβ”€β”€ <video_name_...>.npz
β”‚
β”œβ”€β”€ Boxes
β”‚ β”‚ 
β”‚ β”œβ”€β”€ <video_name_1>.txt
β”‚ β”œβ”€β”€ <video_name_2>.txt
β”‚ β”œβ”€β”€ <video_name_...>.txt
β”‚
β”œβ”€β”€ Visible
β”‚ β”‚ 
β”‚ β”œβ”€β”€ <video_name_1>.txt
β”‚ β”œβ”€β”€ <video_name_2>.txt
β”‚ β”œβ”€β”€ <video_name_...>.txt
β”‚ 
└── JPEGImages
  β”‚ 
  β”œβ”€β”€ <video_name_1>
  β”‚ β”œβ”€β”€ 00000.jpg
  β”‚ β”œβ”€β”€ 00001.jpg
  β”‚ └── ...
  β”‚ 
  β”œβ”€β”€ <video_name_2>
  β”‚ β”œβ”€β”€ 00000.jpg
  β”‚ β”œβ”€β”€ 00001.jpg
  β”‚ └── ...
  β”‚ 
  └── <video_name_...>
```

## BibTeX
If you find Tracking-Any-Granularity helpful to your research, please consider citing our papers.

```
@article{zhang2025sam2trackinggranularity,
  title={SAM 2++: Tracking Anything at Any Granularity},
  author={Jiaming Zhang and Cheng Liang and Yichun Yang and Chenkai Zeng and Yutao Cui and Xinwen Zhang and Xin Zhou and Kai Ma and Gangshan Wu and Limin Wang},
  journal={arXiv preprint arXiv:2510.18822},
  url={https://arxiv.org/abs/2510.18822},
  year={2025}
}
```
## License

Tracking-Any-Granularity dataset is licensed under a [Creative Commons license (CC-BY) 4.0 License](https://creativecommons.org/licenses). The data of Tracking-Any-Granularity is released for non-commercial research purpose only.