Datasets:
Upload convert_scottish_exams.py
Browse files- convert_scottish_exams.py +506 -0
convert_scottish_exams.py
ADDED
|
@@ -0,0 +1,506 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python3
|
| 2 |
+
"""
|
| 3 |
+
Convert NLS Scottish School Exams dataset to Hugging Face format with proper page numbering.
|
| 4 |
+
|
| 5 |
+
This script processes directories containing:
|
| 6 |
+
- image/ folder with JPG files
|
| 7 |
+
- alto/ folder with ALTO XML files
|
| 8 |
+
- METS XML files with page ordering information
|
| 9 |
+
- Creates one row per page with image, text, raw XML, and correct page numbers
|
| 10 |
+
"""
|
| 11 |
+
|
| 12 |
+
import argparse
|
| 13 |
+
import csv
|
| 14 |
+
import logging
|
| 15 |
+
import os
|
| 16 |
+
import re
|
| 17 |
+
import sys
|
| 18 |
+
import xml.etree.ElementTree as ET
|
| 19 |
+
from collections import defaultdict
|
| 20 |
+
from pathlib import Path
|
| 21 |
+
from typing import Optional, Dict, Tuple
|
| 22 |
+
|
| 23 |
+
from datasets import Dataset, Features, Value
|
| 24 |
+
from datasets import Image as HFImage
|
| 25 |
+
from tqdm import tqdm
|
| 26 |
+
|
| 27 |
+
# Set up logging
|
| 28 |
+
logging.basicConfig(level=logging.INFO, format='%(asctime)s - %(levelname)s - %(message)s')
|
| 29 |
+
logger = logging.getLogger(__name__)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
def extract_base_number(filename: str) -> str:
|
| 33 |
+
"""Extract the base number from a filename (before first dot)."""
|
| 34 |
+
return filename.split('.')[0]
|
| 35 |
+
|
| 36 |
+
|
| 37 |
+
def parse_mets_page_order(mets_path: Path) -> Dict[str, int]:
|
| 38 |
+
"""
|
| 39 |
+
Parse METS XML file to extract page ordering information.
|
| 40 |
+
|
| 41 |
+
Returns:
|
| 42 |
+
Dictionary mapping file base numbers to page order numbers
|
| 43 |
+
"""
|
| 44 |
+
page_order_map = {}
|
| 45 |
+
|
| 46 |
+
try:
|
| 47 |
+
tree = ET.parse(mets_path)
|
| 48 |
+
root = tree.getroot()
|
| 49 |
+
|
| 50 |
+
# Define namespaces
|
| 51 |
+
ns = {
|
| 52 |
+
'mets': 'http://www.loc.gov/METS/',
|
| 53 |
+
'xlink': 'http://www.w3.org/1999/xlink'
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
# Find all div elements with ORDER attribute
|
| 57 |
+
for div in root.findall('.//mets:div[@ORDER]', ns):
|
| 58 |
+
order = div.get('ORDER')
|
| 59 |
+
if order:
|
| 60 |
+
# Find all file pointers in this div
|
| 61 |
+
for fptr in div.findall('.//mets:fptr', ns):
|
| 62 |
+
file_id = fptr.get('FILEID')
|
| 63 |
+
if file_id and '.3' in file_id: # Look for image files (.3.jpg)
|
| 64 |
+
# Extract base number from file ID
|
| 65 |
+
base_num = file_id.split('.')[0].replace('file_', '')
|
| 66 |
+
page_order_map[base_num] = int(order)
|
| 67 |
+
|
| 68 |
+
logger.debug(f"Extracted page order for {len(page_order_map)} pages from METS")
|
| 69 |
+
|
| 70 |
+
except Exception as e:
|
| 71 |
+
logger.warning(f"Error parsing METS file {mets_path}: {e}")
|
| 72 |
+
|
| 73 |
+
return page_order_map
|
| 74 |
+
|
| 75 |
+
|
| 76 |
+
def extract_exam_info_from_metadata(metadata: str) -> Dict[str, str]:
|
| 77 |
+
"""
|
| 78 |
+
Extract exam information from metadata string.
|
| 79 |
+
|
| 80 |
+
Example: "Leaving Certificate - 1888 - P.P.1888 XLI"
|
| 81 |
+
Returns: {"exam_type": "Leaving Certificate", "year": "1888", "reference": "P.P.1888 XLI"}
|
| 82 |
+
"""
|
| 83 |
+
info = {
|
| 84 |
+
"exam_type": "",
|
| 85 |
+
"year": "",
|
| 86 |
+
"reference": ""
|
| 87 |
+
}
|
| 88 |
+
|
| 89 |
+
if not metadata:
|
| 90 |
+
return info
|
| 91 |
+
|
| 92 |
+
# Try to extract year (4 digits)
|
| 93 |
+
year_match = re.search(r'\b(18\d{2}|19\d{2}|20\d{2})\b', metadata)
|
| 94 |
+
if year_match:
|
| 95 |
+
info["year"] = year_match.group(1)
|
| 96 |
+
|
| 97 |
+
# Extract exam type (everything before the first dash)
|
| 98 |
+
parts = metadata.split(' - ')
|
| 99 |
+
if parts:
|
| 100 |
+
info["exam_type"] = parts[0].strip()
|
| 101 |
+
|
| 102 |
+
# Extract reference (usually after the last dash)
|
| 103 |
+
if len(parts) >= 3:
|
| 104 |
+
info["reference"] = parts[2].strip()
|
| 105 |
+
|
| 106 |
+
return info
|
| 107 |
+
|
| 108 |
+
|
| 109 |
+
def parse_inventory_csv(root_dir: Path) -> dict[str, str]:
|
| 110 |
+
"""
|
| 111 |
+
Parse inventory CSV file if it exists in the dataset directory.
|
| 112 |
+
|
| 113 |
+
Returns:
|
| 114 |
+
Dictionary mapping document_id to metadata description
|
| 115 |
+
"""
|
| 116 |
+
inventory_pattern = "*-inventory.csv"
|
| 117 |
+
inventory_files = list(root_dir.glob(inventory_pattern))
|
| 118 |
+
|
| 119 |
+
if not inventory_files:
|
| 120 |
+
logger.info("No inventory CSV file found")
|
| 121 |
+
return {}
|
| 122 |
+
|
| 123 |
+
if len(inventory_files) > 1:
|
| 124 |
+
logger.warning(f"Multiple inventory files found: {inventory_files}. Using first one.")
|
| 125 |
+
|
| 126 |
+
inventory_file = inventory_files[0]
|
| 127 |
+
logger.info(f"Reading inventory from: {inventory_file}")
|
| 128 |
+
|
| 129 |
+
metadata_map = {}
|
| 130 |
+
|
| 131 |
+
try:
|
| 132 |
+
# Use utf-8-sig to handle BOM if present
|
| 133 |
+
with open(inventory_file, encoding='utf-8-sig') as f:
|
| 134 |
+
reader = csv.reader(f)
|
| 135 |
+
for row_num, row in enumerate(reader, 1):
|
| 136 |
+
if len(row) >= 2:
|
| 137 |
+
doc_id = row[0].strip()
|
| 138 |
+
description = row[1].strip()
|
| 139 |
+
metadata_map[doc_id] = description
|
| 140 |
+
else:
|
| 141 |
+
logger.warning(f"Skipping malformed row {row_num} in {inventory_file}: {row}")
|
| 142 |
+
|
| 143 |
+
except Exception as e:
|
| 144 |
+
logger.error(f"Error reading inventory CSV: {e}")
|
| 145 |
+
return {}
|
| 146 |
+
|
| 147 |
+
logger.info(f"Loaded metadata for {len(metadata_map)} documents from inventory")
|
| 148 |
+
return metadata_map
|
| 149 |
+
|
| 150 |
+
|
| 151 |
+
def extract_text_from_alto(alto_path: Path) -> tuple[str, str]:
|
| 152 |
+
"""
|
| 153 |
+
Extract text content from an ALTO XML file.
|
| 154 |
+
|
| 155 |
+
Returns:
|
| 156 |
+
Tuple of (extracted_text, raw_xml)
|
| 157 |
+
"""
|
| 158 |
+
try:
|
| 159 |
+
with open(alto_path, encoding='utf-8') as f:
|
| 160 |
+
raw_xml = f.read()
|
| 161 |
+
|
| 162 |
+
# Parse XML
|
| 163 |
+
root = ET.fromstring(raw_xml)
|
| 164 |
+
|
| 165 |
+
# Find all String elements (they contain the actual text)
|
| 166 |
+
# ALTO namespace
|
| 167 |
+
ns = {'alto': 'http://www.loc.gov/standards/alto/v3/alto.xsd'}
|
| 168 |
+
|
| 169 |
+
# Extract text from all String elements
|
| 170 |
+
text_parts = []
|
| 171 |
+
|
| 172 |
+
# Find all TextLine elements
|
| 173 |
+
for textline in root.findall('.//alto:TextLine', ns):
|
| 174 |
+
line_parts = []
|
| 175 |
+
|
| 176 |
+
# Get all String elements in this line
|
| 177 |
+
for string_elem in textline.findall('./alto:String', ns):
|
| 178 |
+
content = string_elem.get('CONTENT', '')
|
| 179 |
+
if content:
|
| 180 |
+
line_parts.append(content)
|
| 181 |
+
|
| 182 |
+
# Join words in the line with spaces
|
| 183 |
+
if line_parts:
|
| 184 |
+
text_parts.append(' '.join(line_parts))
|
| 185 |
+
|
| 186 |
+
# Join lines with newlines
|
| 187 |
+
extracted_text = '\n'.join(text_parts)
|
| 188 |
+
|
| 189 |
+
return extracted_text, raw_xml
|
| 190 |
+
|
| 191 |
+
except Exception as e:
|
| 192 |
+
logger.warning(f"Error processing ALTO file {alto_path}: {e}")
|
| 193 |
+
return "", ""
|
| 194 |
+
|
| 195 |
+
|
| 196 |
+
def process_document_folder(doc_path: Path, metadata_map: dict[str, str] = None) -> list[dict]:
|
| 197 |
+
"""
|
| 198 |
+
Process a single document folder and return list of page records.
|
| 199 |
+
|
| 200 |
+
Args:
|
| 201 |
+
doc_path: Path to document folder
|
| 202 |
+
metadata_map: Optional dictionary mapping document_id to metadata
|
| 203 |
+
"""
|
| 204 |
+
records = []
|
| 205 |
+
doc_id = doc_path.name
|
| 206 |
+
doc_metadata = metadata_map.get(doc_id, None) if metadata_map else None
|
| 207 |
+
|
| 208 |
+
# Extract exam information from metadata
|
| 209 |
+
exam_info = extract_exam_info_from_metadata(doc_metadata)
|
| 210 |
+
|
| 211 |
+
image_dir = doc_path / "image"
|
| 212 |
+
alto_dir = doc_path / "alto"
|
| 213 |
+
mets_file = doc_path / f"{doc_id}-mets.xml"
|
| 214 |
+
|
| 215 |
+
if not image_dir.exists() or not alto_dir.exists():
|
| 216 |
+
logger.warning(f"Skipping {doc_path}: missing image or alto directory")
|
| 217 |
+
return records
|
| 218 |
+
|
| 219 |
+
# Parse METS file to get page ordering
|
| 220 |
+
page_order_map = {}
|
| 221 |
+
if mets_file.exists():
|
| 222 |
+
page_order_map = parse_mets_page_order(mets_file)
|
| 223 |
+
else:
|
| 224 |
+
logger.warning(f"No METS file found for {doc_id}, using filename sorting for page order")
|
| 225 |
+
|
| 226 |
+
# Get all image files
|
| 227 |
+
image_files = {f for f in os.listdir(image_dir)
|
| 228 |
+
if f.lower().endswith(('.jpg', '.jpeg', '.png', '.tiff', '.tif'))}
|
| 229 |
+
|
| 230 |
+
# Get all ALTO files
|
| 231 |
+
alto_files = {f for f in os.listdir(alto_dir) if f.endswith('.xml')}
|
| 232 |
+
|
| 233 |
+
# Create mapping from base number to files
|
| 234 |
+
image_map = {extract_base_number(f): f for f in image_files}
|
| 235 |
+
alto_map = {extract_base_number(f): f for f in alto_files}
|
| 236 |
+
|
| 237 |
+
# Get all unique page numbers
|
| 238 |
+
all_pages = set(image_map.keys()) | set(alto_map.keys())
|
| 239 |
+
|
| 240 |
+
# If no METS page order, create sequential numbering
|
| 241 |
+
if not page_order_map:
|
| 242 |
+
sorted_pages = sorted(all_pages)
|
| 243 |
+
page_order_map = {page: idx + 1 for idx, page in enumerate(sorted_pages)}
|
| 244 |
+
|
| 245 |
+
# Process each page
|
| 246 |
+
for page_base in sorted(all_pages, key=lambda x: page_order_map.get(x, 999999)):
|
| 247 |
+
actual_page_number = page_order_map.get(page_base, 0)
|
| 248 |
+
|
| 249 |
+
record = {
|
| 250 |
+
'document_id': doc_path.name,
|
| 251 |
+
'page_number': actual_page_number,
|
| 252 |
+
'file_identifier': page_base,
|
| 253 |
+
'image_path': None,
|
| 254 |
+
'alto_xml': None,
|
| 255 |
+
'text': None,
|
| 256 |
+
'has_image': False,
|
| 257 |
+
'has_alto': False,
|
| 258 |
+
'document_metadata': doc_metadata,
|
| 259 |
+
'has_metadata': doc_metadata is not None,
|
| 260 |
+
'exam_type': exam_info['exam_type'],
|
| 261 |
+
'exam_year': exam_info['year'],
|
| 262 |
+
'exam_reference': exam_info['reference']
|
| 263 |
+
}
|
| 264 |
+
|
| 265 |
+
# Check for image
|
| 266 |
+
if page_base in image_map:
|
| 267 |
+
image_path = image_dir / image_map[page_base]
|
| 268 |
+
if image_path.exists():
|
| 269 |
+
record['image_path'] = str(image_path)
|
| 270 |
+
record['has_image'] = True
|
| 271 |
+
|
| 272 |
+
# Check for ALTO
|
| 273 |
+
if page_base in alto_map:
|
| 274 |
+
alto_path = alto_dir / alto_map[page_base]
|
| 275 |
+
if alto_path.exists():
|
| 276 |
+
text, xml = extract_text_from_alto(alto_path)
|
| 277 |
+
record['alto_xml'] = xml
|
| 278 |
+
record['text'] = text
|
| 279 |
+
record['has_alto'] = True
|
| 280 |
+
|
| 281 |
+
records.append(record)
|
| 282 |
+
|
| 283 |
+
return records
|
| 284 |
+
|
| 285 |
+
|
| 286 |
+
def process_dataset(root_dir: Path, max_docs: Optional[int] = None,
|
| 287 |
+
include_metadata: bool = True) -> list[dict]:
|
| 288 |
+
"""
|
| 289 |
+
Process entire dataset directory.
|
| 290 |
+
|
| 291 |
+
Args:
|
| 292 |
+
root_dir: Root directory of dataset
|
| 293 |
+
max_docs: Maximum number of documents to process
|
| 294 |
+
include_metadata: Whether to include metadata from inventory CSV
|
| 295 |
+
"""
|
| 296 |
+
all_records = []
|
| 297 |
+
|
| 298 |
+
# Parse inventory CSV if requested
|
| 299 |
+
metadata_map = {}
|
| 300 |
+
if include_metadata:
|
| 301 |
+
metadata_map = parse_inventory_csv(root_dir)
|
| 302 |
+
|
| 303 |
+
# Find all document directories
|
| 304 |
+
doc_dirs = [d for d in root_dir.iterdir()
|
| 305 |
+
if d.is_dir() and not d.name.startswith('.')
|
| 306 |
+
and d.name not in ['__pycache__']]
|
| 307 |
+
|
| 308 |
+
if max_docs:
|
| 309 |
+
doc_dirs = doc_dirs[:max_docs]
|
| 310 |
+
|
| 311 |
+
logger.info(f"Processing {len(doc_dirs)} document directories...")
|
| 312 |
+
|
| 313 |
+
# Process each document
|
| 314 |
+
for doc_dir in tqdm(doc_dirs, desc="Processing documents"):
|
| 315 |
+
records = process_document_folder(doc_dir, metadata_map)
|
| 316 |
+
all_records.extend(records)
|
| 317 |
+
|
| 318 |
+
return all_records
|
| 319 |
+
|
| 320 |
+
|
| 321 |
+
def create_huggingface_dataset(records: list[dict], include_missing: bool = True) -> Dataset:
|
| 322 |
+
"""
|
| 323 |
+
Create a Hugging Face dataset from records.
|
| 324 |
+
|
| 325 |
+
Args:
|
| 326 |
+
records: List of page records
|
| 327 |
+
include_missing: If False, only include pages with both image and ALTO
|
| 328 |
+
"""
|
| 329 |
+
# Filter records if needed
|
| 330 |
+
if not include_missing:
|
| 331 |
+
records = [r for r in records if r['has_image'] and r['has_alto']]
|
| 332 |
+
logger.info(f"Filtered to {len(records)} records with both image and ALTO")
|
| 333 |
+
|
| 334 |
+
# Prepare data for HF dataset
|
| 335 |
+
dataset_dict = defaultdict(list)
|
| 336 |
+
|
| 337 |
+
for record in records:
|
| 338 |
+
dataset_dict['document_id'].append(record['document_id'])
|
| 339 |
+
dataset_dict['page_number'].append(record['page_number'])
|
| 340 |
+
dataset_dict['file_identifier'].append(record['file_identifier'])
|
| 341 |
+
|
| 342 |
+
# Store image path instead of loading image
|
| 343 |
+
# HuggingFace datasets will handle loading when needed
|
| 344 |
+
if record['has_image'] and record['image_path']:
|
| 345 |
+
dataset_dict['image'].append(record['image_path'])
|
| 346 |
+
else:
|
| 347 |
+
dataset_dict['image'].append(None)
|
| 348 |
+
|
| 349 |
+
dataset_dict['text'].append(record['text'] or "")
|
| 350 |
+
dataset_dict['alto_xml'].append(record['alto_xml'] or "")
|
| 351 |
+
dataset_dict['has_image'].append(record['has_image'])
|
| 352 |
+
dataset_dict['has_alto'].append(record['has_alto'])
|
| 353 |
+
dataset_dict['document_metadata'].append(record.get('document_metadata') or "")
|
| 354 |
+
dataset_dict['has_metadata'].append(record.get('has_metadata', False))
|
| 355 |
+
dataset_dict['exam_type'].append(record.get('exam_type', ''))
|
| 356 |
+
dataset_dict['exam_year'].append(record.get('exam_year', ''))
|
| 357 |
+
dataset_dict['exam_reference'].append(record.get('exam_reference', ''))
|
| 358 |
+
|
| 359 |
+
# Create HF dataset
|
| 360 |
+
features = Features({
|
| 361 |
+
'document_id': Value('string'),
|
| 362 |
+
'page_number': Value('int32'),
|
| 363 |
+
'file_identifier': Value('string'),
|
| 364 |
+
'image': HFImage(),
|
| 365 |
+
'text': Value('string'),
|
| 366 |
+
'alto_xml': Value('string'),
|
| 367 |
+
'has_image': Value('bool'),
|
| 368 |
+
'has_alto': Value('bool'),
|
| 369 |
+
'document_metadata': Value('string'),
|
| 370 |
+
'has_metadata': Value('bool'),
|
| 371 |
+
'exam_type': Value('string'),
|
| 372 |
+
'exam_year': Value('string'),
|
| 373 |
+
'exam_reference': Value('string')
|
| 374 |
+
})
|
| 375 |
+
|
| 376 |
+
dataset = Dataset.from_dict(dict(dataset_dict), features=features)
|
| 377 |
+
|
| 378 |
+
return dataset
|
| 379 |
+
|
| 380 |
+
|
| 381 |
+
def print_statistics(records: list[dict]):
|
| 382 |
+
"""Print statistics about the processed dataset."""
|
| 383 |
+
total = len(records)
|
| 384 |
+
with_both = sum(1 for r in records if r['has_image'] and r['has_alto'])
|
| 385 |
+
image_only = sum(1 for r in records if r['has_image'] and not r['has_alto'])
|
| 386 |
+
alto_only = sum(1 for r in records if not r['has_image'] and r['has_alto'])
|
| 387 |
+
with_metadata = sum(1 for r in records if r.get('has_metadata', False))
|
| 388 |
+
|
| 389 |
+
print("\n=== Dataset Statistics ===")
|
| 390 |
+
print(f"Total pages: {total:,}")
|
| 391 |
+
print(f"Pages with both image and ALTO: {with_both:,} ({with_both/total*100:.1f}%)")
|
| 392 |
+
print(f"Pages with image only: {image_only:,} ({image_only/total*100:.1f}%)")
|
| 393 |
+
print(f"Pages with ALTO only: {alto_only:,} ({alto_only/total*100:.1f}%)")
|
| 394 |
+
if with_metadata > 0:
|
| 395 |
+
print(f"Pages with metadata: {with_metadata:,} ({with_metadata/total*100:.1f}%)")
|
| 396 |
+
|
| 397 |
+
# Document statistics
|
| 398 |
+
docs = defaultdict(lambda: {'pages': 0, 'complete': 0, 'has_metadata': False})
|
| 399 |
+
for r in records:
|
| 400 |
+
docs[r['document_id']]['pages'] += 1
|
| 401 |
+
if r['has_image'] and r['has_alto']:
|
| 402 |
+
docs[r['document_id']]['complete'] += 1
|
| 403 |
+
if r.get('has_metadata', False):
|
| 404 |
+
docs[r['document_id']]['has_metadata'] = True
|
| 405 |
+
|
| 406 |
+
print(f"\nTotal documents: {len(docs)}")
|
| 407 |
+
complete_docs = sum(1 for d in docs.values() if d['pages'] == d['complete'])
|
| 408 |
+
print(f"Documents with all pages complete: {complete_docs} "
|
| 409 |
+
f"({complete_docs/len(docs)*100:.1f}%)")
|
| 410 |
+
|
| 411 |
+
docs_with_metadata = sum(1 for d in docs.values() if d['has_metadata'])
|
| 412 |
+
if docs_with_metadata > 0:
|
| 413 |
+
print(f"Documents with metadata: {docs_with_metadata} "
|
| 414 |
+
f"({docs_with_metadata/len(docs)*100:.1f}%)")
|
| 415 |
+
|
| 416 |
+
# Year distribution
|
| 417 |
+
years = defaultdict(int)
|
| 418 |
+
for r in records:
|
| 419 |
+
year = r.get('exam_year', '')
|
| 420 |
+
if year:
|
| 421 |
+
years[year] += 1
|
| 422 |
+
|
| 423 |
+
if years:
|
| 424 |
+
print("\n=== Exam Years Distribution ===")
|
| 425 |
+
for year in sorted(years.keys()):
|
| 426 |
+
print(f"{year}: {years[year]} pages")
|
| 427 |
+
|
| 428 |
+
|
| 429 |
+
def main():
|
| 430 |
+
parser = argparse.ArgumentParser(description='Convert NLS Scottish Exams dataset to Hugging Face format')
|
| 431 |
+
parser.add_argument('input_dir', type=str, help='Path to dataset directory')
|
| 432 |
+
parser.add_argument('output_path', type=str, help='Output path for HF dataset')
|
| 433 |
+
parser.add_argument('--max-docs', type=int, help='Maximum number of documents to process')
|
| 434 |
+
parser.add_argument('--include-missing', action='store_true',
|
| 435 |
+
help='Include pages with missing image or ALTO')
|
| 436 |
+
parser.add_argument('--format', choices=['parquet', 'json', 'csv'],
|
| 437 |
+
default='parquet', help='Output format')
|
| 438 |
+
parser.add_argument('--push-to-hub', action='store_true',
|
| 439 |
+
help='Push dataset to Hugging Face Hub')
|
| 440 |
+
parser.add_argument('--repo-id', type=str,
|
| 441 |
+
help='Repository ID on Hugging Face Hub (e.g., username/dataset-name)')
|
| 442 |
+
parser.add_argument('--private', action='store_true',
|
| 443 |
+
help='Make the dataset private on Hugging Face Hub')
|
| 444 |
+
parser.add_argument('--include-metadata', type=str, default='true',
|
| 445 |
+
choices=['true', 'false'],
|
| 446 |
+
help='Include metadata from inventory CSV if available (default: true)')
|
| 447 |
+
|
| 448 |
+
args = parser.parse_args()
|
| 449 |
+
|
| 450 |
+
# Validate arguments
|
| 451 |
+
if args.push_to_hub and not args.repo_id:
|
| 452 |
+
logger.error("--repo-id is required when using --push-to-hub")
|
| 453 |
+
sys.exit(1)
|
| 454 |
+
|
| 455 |
+
input_path = Path(args.input_dir)
|
| 456 |
+
if not input_path.exists():
|
| 457 |
+
logger.error(f"Input directory does not exist: {input_path}")
|
| 458 |
+
sys.exit(1)
|
| 459 |
+
|
| 460 |
+
# Convert string boolean to actual boolean
|
| 461 |
+
include_metadata = args.include_metadata.lower() == 'true'
|
| 462 |
+
|
| 463 |
+
# Process dataset
|
| 464 |
+
logger.info(f"Processing dataset from {input_path}")
|
| 465 |
+
records = process_dataset(input_path, args.max_docs, include_metadata)
|
| 466 |
+
|
| 467 |
+
if not records:
|
| 468 |
+
logger.error("No records found!")
|
| 469 |
+
sys.exit(1)
|
| 470 |
+
|
| 471 |
+
# Print statistics
|
| 472 |
+
print_statistics(records)
|
| 473 |
+
|
| 474 |
+
# Create HF dataset
|
| 475 |
+
logger.info("Creating Hugging Face dataset...")
|
| 476 |
+
dataset = create_huggingface_dataset(records, include_missing=args.include_missing)
|
| 477 |
+
|
| 478 |
+
# Save dataset locally
|
| 479 |
+
logger.info(f"Saving dataset to {args.output_path}")
|
| 480 |
+
if args.format == 'parquet':
|
| 481 |
+
dataset.to_parquet(args.output_path)
|
| 482 |
+
elif args.format == 'json':
|
| 483 |
+
dataset.to_json(args.output_path)
|
| 484 |
+
elif args.format == 'csv':
|
| 485 |
+
dataset.to_csv(args.output_path)
|
| 486 |
+
|
| 487 |
+
logger.info(f"Dataset saved successfully! Total rows: {len(dataset)}")
|
| 488 |
+
|
| 489 |
+
# Push to Hugging Face Hub if requested
|
| 490 |
+
if args.push_to_hub:
|
| 491 |
+
logger.info(f"Pushing dataset to Hugging Face Hub: {args.repo_id}")
|
| 492 |
+
try:
|
| 493 |
+
dataset.push_to_hub(
|
| 494 |
+
repo_id=args.repo_id,
|
| 495 |
+
private=args.private,
|
| 496 |
+
commit_message=f"Add NLS Scottish Exams dataset with {len(dataset)} pages"
|
| 497 |
+
)
|
| 498 |
+
logger.info(f"Dataset successfully pushed to https://huggingface.co/datasets/{args.repo_id}")
|
| 499 |
+
except Exception as e:
|
| 500 |
+
logger.error(f"Failed to push to Hub: {e}")
|
| 501 |
+
logger.info("Make sure you're logged in with 'huggingface-cli login'")
|
| 502 |
+
sys.exit(1)
|
| 503 |
+
|
| 504 |
+
|
| 505 |
+
if __name__ == "__main__":
|
| 506 |
+
main()
|