Inflate JSON (tarballed) dataset
Browse files- .gitattributes +1 -0
- csqa-sparqltotext.py +239 -0
- json/csqa_sparql_to_text.tar.gz +3 -0
.gitattributes
CHANGED
|
@@ -53,3 +53,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 53 |
*.jpg filter=lfs diff=lfs merge=lfs -text
|
| 54 |
*.jpeg filter=lfs diff=lfs merge=lfs -text
|
| 55 |
*.webp filter=lfs diff=lfs merge=lfs -text
|
| 56 |
+
json/csqa_sparql_to_text.tar.gz filter=lfs diff=lfs merge=lfs -text
|
csqa-sparqltotext.py
ADDED
|
@@ -0,0 +1,239 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
|
| 2 |
+
import os
|
| 3 |
+
|
| 4 |
+
import json
|
| 5 |
+
|
| 6 |
+
import datasets
|
| 7 |
+
from typing import Any
|
| 8 |
+
|
| 9 |
+
import sys
|
| 10 |
+
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
_CITATION = """\
|
| 14 |
+
@inproceedings{lecorve2022sparql2text,
|
| 15 |
+
title={Coqar: Question rewriting on coqa},
|
| 16 |
+
author={Lecorv\'e, Gw\'enol\'e and Veyret, Morgan and Brabant, Quentin and Rojas-Barahona, Lina M.},
|
| 17 |
+
journal={Proceedings of the Conference of the Asia-Pacific Chapter of the Association for Computational Linguistics and the International Joint Conference on Natural Language Processing (AACL-IJCNLP)},
|
| 18 |
+
year={2022}
|
| 19 |
+
}
|
| 20 |
+
"""
|
| 21 |
+
|
| 22 |
+
_HOMEPAGE = ""
|
| 23 |
+
|
| 24 |
+
_DESCRIPTION = """\
|
| 25 |
+
Special version of CSQA for the SPARQL-to-Text task
|
| 26 |
+
"""
|
| 27 |
+
|
| 28 |
+
_URLS = {
|
| 29 |
+
"all": "json/csqa_sparql_to_text.tar.gz"
|
| 30 |
+
}
|
| 31 |
+
|
| 32 |
+
class CSQA(datasets.GeneratorBasedBuilder):
|
| 33 |
+
"""
|
| 34 |
+
Complex Sequential Question Answering dataset
|
| 35 |
+
"""
|
| 36 |
+
|
| 37 |
+
VERSION = datasets.Version("1.0.0")
|
| 38 |
+
|
| 39 |
+
def _info(self):
|
| 40 |
+
return datasets.DatasetInfo(
|
| 41 |
+
# This is the description that will appear on the datasets page.
|
| 42 |
+
description=_DESCRIPTION,
|
| 43 |
+
# datasets.features.FeatureConnectors
|
| 44 |
+
#"active_set"
|
| 45 |
+
#"all_entities"
|
| 46 |
+
#"bool_ques_type"
|
| 47 |
+
#"count_ques_sub_type"
|
| 48 |
+
#"count_ques_type"
|
| 49 |
+
#"description"
|
| 50 |
+
#"entities"
|
| 51 |
+
#"entities_in_utterance"
|
| 52 |
+
#"gold_actions"
|
| 53 |
+
#"inc_ques_type"
|
| 54 |
+
#"is_inc"
|
| 55 |
+
#"is_incomplete"
|
| 56 |
+
#"is_spurious"
|
| 57 |
+
#"masked_verbalized_answer"
|
| 58 |
+
#"parsed_active_set"
|
| 59 |
+
#"ques_type_id"
|
| 60 |
+
#"question-type"
|
| 61 |
+
#"relations"
|
| 62 |
+
#"sec_ques_sub_type"
|
| 63 |
+
#"sec_ques_type"
|
| 64 |
+
#"set_op_choice"
|
| 65 |
+
#"set_op"
|
| 66 |
+
#"sparql_query"
|
| 67 |
+
#"speaker"
|
| 68 |
+
#"type_list"
|
| 69 |
+
#"utterance"
|
| 70 |
+
#"utterance"
|
| 71 |
+
#"verbalized_all_entities"
|
| 72 |
+
#"verbalized_answer"
|
| 73 |
+
#"verbalized_entities_in_utterance"
|
| 74 |
+
#"verbalized_gold_actions"
|
| 75 |
+
#"verbalized_parsed_active_set"
|
| 76 |
+
#"verbalized_sparql_query"
|
| 77 |
+
#"verbalized_triple"
|
| 78 |
+
#"verbalized_type_list"
|
| 79 |
+
features=datasets.Features(
|
| 80 |
+
{
|
| 81 |
+
"id": datasets.Value("string"),
|
| 82 |
+
"turns": [
|
| 83 |
+
{
|
| 84 |
+
"id": datasets.Value("int64"),
|
| 85 |
+
"ques_type_id": datasets.Value("int64"),
|
| 86 |
+
"question-type": datasets.Value("string"),
|
| 87 |
+
"description": datasets.Value("string"),
|
| 88 |
+
"entities_in_utterance": [datasets.Value("string")],
|
| 89 |
+
"relations": [datasets.Value("string")],
|
| 90 |
+
"type_list": [datasets.Value("string")],
|
| 91 |
+
"speaker": datasets.Value("string"),
|
| 92 |
+
"utterance": datasets.Value("string"),
|
| 93 |
+
"all_entities": [datasets.Value("string")],
|
| 94 |
+
"active_set": [datasets.Value("string")],
|
| 95 |
+
'sec_ques_sub_type': datasets.Value("int64"),
|
| 96 |
+
'sec_ques_type': datasets.Value("int64"),
|
| 97 |
+
'set_op_choice': datasets.Value("int64"),
|
| 98 |
+
'is_inc': datasets.Value("int64"),
|
| 99 |
+
'count_ques_sub_type': datasets.Value("int64"),
|
| 100 |
+
'count_ques_type': datasets.Value("int64"),
|
| 101 |
+
'is_incomplete': datasets.Value("int64"),
|
| 102 |
+
'inc_ques_type': datasets.Value("int64"),
|
| 103 |
+
'set_op': datasets.Value("int64"),
|
| 104 |
+
'bool_ques_type': datasets.Value("int64"),
|
| 105 |
+
'entities': [datasets.Value("string")],
|
| 106 |
+
"clarification_step": datasets.Value("int64"),
|
| 107 |
+
"gold_actions": [[datasets.Value("string")]],
|
| 108 |
+
"is_spurious": datasets.Value("bool"),
|
| 109 |
+
"masked_verbalized_answer": datasets.Value("string"),
|
| 110 |
+
"parsed_active_set": [datasets.Value("string")],
|
| 111 |
+
"sparql_query": datasets.Value("string"),
|
| 112 |
+
"verbalized_all_entities": [datasets.Value("string")],
|
| 113 |
+
"verbalized_answer": datasets.Value("string"),
|
| 114 |
+
"verbalized_entities_in_utterance": [datasets.Value("string")],
|
| 115 |
+
"verbalized_gold_actions": [[datasets.Value("string")]],
|
| 116 |
+
"verbalized_parsed_active_set": [datasets.Value("string")],
|
| 117 |
+
"verbalized_sparql_query": datasets.Value("string"),
|
| 118 |
+
"verbalized_triple": datasets.Value("string"),
|
| 119 |
+
"verbalized_type_list": [datasets.Value("string")]
|
| 120 |
+
}
|
| 121 |
+
]
|
| 122 |
+
}
|
| 123 |
+
),
|
| 124 |
+
# If there's a common (input, target) tuple from the features,
|
| 125 |
+
# specify them here. They'll be used if as_supervised=True in
|
| 126 |
+
# builder.as_dataset
|
| 127 |
+
supervised_keys=None,
|
| 128 |
+
# Homepage of the dataset for documentation
|
| 129 |
+
homepage=_HOMEPAGE,
|
| 130 |
+
citation=_CITATION,
|
| 131 |
+
)
|
| 132 |
+
|
| 133 |
+
def _split_generators(self, dl_manager):
|
| 134 |
+
"""Returns SplitGenerators."""
|
| 135 |
+
# Downloads the data and defines the splits
|
| 136 |
+
# dl_manager is a datasets.download.DownloadManager that can be used to
|
| 137 |
+
# download and extract URLs
|
| 138 |
+
downloaded_files = dl_manager.download_and_extract(_URLS)
|
| 139 |
+
train_path = os.path.join(downloaded_files['all'],'csqa_sparql_to_text/train/')
|
| 140 |
+
test_path = os.path.join(downloaded_files['all'],'csqa_sparql_to_text/test/')
|
| 141 |
+
valid_path = os.path.join(downloaded_files['all'],'csqa_sparql_to_text/valid/')
|
| 142 |
+
return [
|
| 143 |
+
datasets.SplitGenerator(
|
| 144 |
+
name=datasets.Split.TRAIN,
|
| 145 |
+
gen_kwargs={"filepath": train_path,
|
| 146 |
+
"split": "train"}
|
| 147 |
+
),
|
| 148 |
+
datasets.SplitGenerator(
|
| 149 |
+
name=datasets.Split.TEST,
|
| 150 |
+
gen_kwargs={"filepath": test_path,
|
| 151 |
+
"split": "test"}
|
| 152 |
+
),
|
| 153 |
+
datasets.SplitGenerator(
|
| 154 |
+
name=datasets.Split.VALIDATION,
|
| 155 |
+
gen_kwargs={"filepath": valid_path,
|
| 156 |
+
"split": "valid"}
|
| 157 |
+
),
|
| 158 |
+
]
|
| 159 |
+
|
| 160 |
+
def _generate_examples(self, filepath, split):
|
| 161 |
+
"""Yields examples."""
|
| 162 |
+
# Yields (key, example) tuples from the dataset
|
| 163 |
+
def _transform(x):
|
| 164 |
+
pattern = {
|
| 165 |
+
"id": None,
|
| 166 |
+
"ques_type_id": None,
|
| 167 |
+
"question-type": "",
|
| 168 |
+
"description": "",
|
| 169 |
+
"entities_in_utterance": [],
|
| 170 |
+
"relations": [],
|
| 171 |
+
"type_list": [],
|
| 172 |
+
"speaker": "",
|
| 173 |
+
"utterance": "",
|
| 174 |
+
"all_entities": [],
|
| 175 |
+
"active_set": [],
|
| 176 |
+
'sec_ques_sub_type': None,
|
| 177 |
+
'sec_ques_type': None,
|
| 178 |
+
'set_op_choice': None,
|
| 179 |
+
'is_inc': None,
|
| 180 |
+
'count_ques_sub_type': None,
|
| 181 |
+
'count_ques_type': None,
|
| 182 |
+
'is_incomplete': None,
|
| 183 |
+
'inc_ques_type': None,
|
| 184 |
+
'set_op': None,
|
| 185 |
+
'bool_ques_type': None,
|
| 186 |
+
'entities': [],
|
| 187 |
+
"clarification_step": None,
|
| 188 |
+
"gold_actions": [],
|
| 189 |
+
"is_spurious": None,
|
| 190 |
+
"masked_verbalized_answer": None,
|
| 191 |
+
"parsed_active_set": [],
|
| 192 |
+
"sparql_query": None,
|
| 193 |
+
"verbalized_all_entities": [],
|
| 194 |
+
"verbalized_answer": None,
|
| 195 |
+
"verbalized_entities_in_utterance": [],
|
| 196 |
+
"verbalized_gold_actions": [],
|
| 197 |
+
"verbalized_parsed_active_set": [],
|
| 198 |
+
"verbalized_sparql_query": None,
|
| 199 |
+
"verbalized_triple": [],
|
| 200 |
+
"verbalized_type_list": []
|
| 201 |
+
}
|
| 202 |
+
|
| 203 |
+
# if "verbalized_triple" in x:
|
| 204 |
+
# x["verbalized_triple"] = json.dumps(x["verbalized_triple"])
|
| 205 |
+
# for k in ["parsed_active_set", "verbalized_gold_actions", "verbalized_parsed_active_set"]:
|
| 206 |
+
# if k in x:
|
| 207 |
+
# del x[k]
|
| 208 |
+
pattern.update(x)
|
| 209 |
+
# if "verbalized_triple" in pattern:
|
| 210 |
+
# if type(pattern["verbalized_triple"]) != list:
|
| 211 |
+
# print(pattern["verbalized_triple"])
|
| 212 |
+
# sys.exit()
|
| 213 |
+
return pattern
|
| 214 |
+
data_keys = {}
|
| 215 |
+
for root, dirs, files in os.walk(filepath):
|
| 216 |
+
dialog_id = root.split('/')[-1]
|
| 217 |
+
for i,filename in enumerate(files):
|
| 218 |
+
sample_id = "%s:%s"%(dialog_id,i)
|
| 219 |
+
with open(os.path.join(root,filename),'r') as f:
|
| 220 |
+
data = json.load(f)
|
| 221 |
+
# print("--")
|
| 222 |
+
for x in data:
|
| 223 |
+
for k,v in x.items():
|
| 224 |
+
if not k in data_keys:
|
| 225 |
+
data_keys[k] = type(v)
|
| 226 |
+
new_data = list()
|
| 227 |
+
for i,_ in enumerate(data):
|
| 228 |
+
# if "verbalized_triple" in data[i]:
|
| 229 |
+
# print(json.dumps(data[i]["verbalized_triple"], indent=2))
|
| 230 |
+
# if i < len(data)-1:
|
| 231 |
+
# if "verbalized_triple" in data[i+1]:
|
| 232 |
+
# print("i+1", json.dumps(data[i+1]["verbalized_triple"], indent=2))
|
| 233 |
+
new_data.append(data[i])
|
| 234 |
+
data = [ _transform(x) for x in data]
|
| 235 |
+
yield sample_id, {
|
| 236 |
+
"id": sample_id,
|
| 237 |
+
"turns": data
|
| 238 |
+
}
|
| 239 |
+
|
json/csqa_sparql_to_text.tar.gz
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a1fe95884ee73a5dd6c5077778bdd15a59aaddb934962552839f18ec3a7bc4d9
|
| 3 |
+
size 1898697672
|