Datasets:

Modalities:
Image
Languages:
English
ArXiv:
Tags:
image
License:
jespark commited on
Commit
995e5a6
·
verified ·
1 Parent(s): a16fb7b

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +6 -7
README.md CHANGED
@@ -112,20 +112,19 @@ import datasets as ds
112
  import PIL.Image as Image
113
  import io
114
 
115
- # full data streaming
116
- commfor_train_stream = ds.load_dataset("OwensLab/CommunityForensics", split='Systematic+Manual', streaming=True)
117
 
118
  # streaming only the evaluation set
119
  commfor_eval_stream = ds.load_dataset("OwensLab/CommunityForensics", split='PublicEval', streaming=True)
120
 
121
- # streaming only 10% of training data. Note that this does not contain the full set of models!
122
- commfor_train_stream_10p = ds.load_dataset("OwensLab/CommunityForensics", split='Systematic[:10%]+Manual[:10%]', streaming=True)
123
-
124
  # optionally shuffle the streaming dataset
125
- commfor_train_stream_10p = commfor_train_stream_10p.shuffle(seed=123, buffer_size=3000)
126
 
127
  # usage example
128
- for i, data in enumerate(commfor_train_stream_10p):
 
 
129
  img, label = Image.open(io.BytesIO(data['image_data'])), data['label']
130
  ## Your operations here ##
131
  # e.g., img_torch = torchvision.transforms.functional.pil_to_tensor(img)
 
112
  import PIL.Image as Image
113
  import io
114
 
115
+ # steaming only the systematic set. Note that when streaming, you can only load specific splits
116
+ commfor_sys_stream = ds.load_dataset("OwensLab/CommunityForensics", split='Systematic', streaming=True)
117
 
118
  # streaming only the evaluation set
119
  commfor_eval_stream = ds.load_dataset("OwensLab/CommunityForensics", split='PublicEval', streaming=True)
120
 
 
 
 
121
  # optionally shuffle the streaming dataset
122
+ commfor_sys_stream = commfor_sys_stream.shuffle(seed=123, buffer_size=3000)
123
 
124
  # usage example
125
+ for i, data in enumerate(commfor_sys_stream):
126
+ if i>=10000: # use only first 10000 samples
127
+ break
128
  img, label = Image.open(io.BytesIO(data['image_data'])), data['label']
129
  ## Your operations here ##
130
  # e.g., img_torch = torchvision.transforms.functional.pil_to_tensor(img)