|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
"""ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts""" |
|
|
|
|
|
|
|
|
import csv |
|
|
import os |
|
|
|
|
|
import datasets |
|
|
|
|
|
|
|
|
_CITATION = """\ |
|
|
@inproceedings{soares-etal-2020-parapat, |
|
|
title = "{P}ara{P}at: The Multi-Million Sentences Parallel Corpus of Patents Abstracts", |
|
|
author = "Soares, Felipe and |
|
|
Stevenson, Mark and |
|
|
Bartolome, Diego and |
|
|
Zaretskaya, Anna", |
|
|
booktitle = "Proceedings of The 12th Language Resources and Evaluation Conference", |
|
|
month = may, |
|
|
year = "2020", |
|
|
address = "Marseille, France", |
|
|
publisher = "European Language Resources Association", |
|
|
url = "https://www.aclweb.org/anthology/2020.lrec-1.465", |
|
|
pages = "3769--3774", |
|
|
language = "English", |
|
|
ISBN = "979-10-95546-34-4", |
|
|
} |
|
|
""" |
|
|
|
|
|
_DESCRIPTION = """\ |
|
|
ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts |
|
|
|
|
|
This dataset contains the developed parallel corpus from the open access Google |
|
|
Patents dataset in 74 language pairs, comprising more than 68 million sentences |
|
|
and 800 million tokens. Sentences were automatically aligned using the Hunalign algorithm |
|
|
for the largest 22 language pairs, while the others were abstract (i.e. paragraph) aligned. |
|
|
|
|
|
""" |
|
|
|
|
|
_HOMEPAGE = ( |
|
|
"https://figshare.com/articles/ParaPat_The_Multi-Million_Sentences_Parallel_Corpus_of_Patents_Abstracts/12627632" |
|
|
) |
|
|
|
|
|
_LICENSE = "CC BY 4.0" |
|
|
|
|
|
type1_datasets_file = ["el-en", "cs-en", "en-hu", "en-ro", "en-sk", "en-uk", "es-fr", "fr-ru"] |
|
|
type2_datasets_file = [ |
|
|
"de-fr", |
|
|
"en-ja", |
|
|
"en-es", |
|
|
"en-fr", |
|
|
"de-en", |
|
|
"en-ko", |
|
|
"fr-ja", |
|
|
"en-zh", |
|
|
"en-ru", |
|
|
"fr-ko", |
|
|
"ru-uk", |
|
|
"en-pt", |
|
|
] |
|
|
|
|
|
type1_datasets_features = [ |
|
|
"el-en", |
|
|
"cs-en", |
|
|
"en-hu", |
|
|
"en-ro", |
|
|
"en-sk", |
|
|
"en-uk", |
|
|
"es-fr", |
|
|
"fr-ru", |
|
|
"fr-ko", |
|
|
"ru-uk", |
|
|
"en-pt", |
|
|
] |
|
|
type2_datasets_features = ["de-fr", "en-ja", "en-es", "en-fr", "de-en", "en-ko", "fr-ja", "en-zh", "en-ru"] |
|
|
|
|
|
|
|
|
class ParaPatConfig(datasets.BuilderConfig): |
|
|
"""BuilderConfig for ParaPat.""" |
|
|
|
|
|
def __init__(self, language_pair=(None, None), url=None, **kwargs): |
|
|
"""BuilderConfig for ParaPat.""" |
|
|
name = "%s-%s" % (language_pair[0], language_pair[1]) |
|
|
|
|
|
description = ("Translation dataset from %s to %s") % (language_pair[0], language_pair[1]) |
|
|
|
|
|
source, target = language_pair |
|
|
super(ParaPatConfig, self).__init__( |
|
|
name=name, |
|
|
description=description, |
|
|
version=datasets.Version("1.1.0", ""), |
|
|
**kwargs, |
|
|
) |
|
|
|
|
|
self.language_pair = language_pair |
|
|
self.url = url |
|
|
|
|
|
|
|
|
class ParaPat(datasets.GeneratorBasedBuilder): |
|
|
"""ParaPat: The Multi-Million Sentences Parallel Corpus of Patents Abstracts""" |
|
|
|
|
|
VERSION = datasets.Version("1.1.0") |
|
|
|
|
|
BUILDER_CONFIGS = [ |
|
|
ParaPatConfig( |
|
|
language_pair=("el", "en"), |
|
|
url="https://ndownloader.figshare.com/files/23748818", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("cs", "en"), |
|
|
url="https://ndownloader.figshare.com/files/23748821", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("en", "hu"), |
|
|
url="https://ndownloader.figshare.com/files/23748827", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("en", "ro"), |
|
|
url="https://ndownloader.figshare.com/files/23748842", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("en", "sk"), |
|
|
url="https://ndownloader.figshare.com/files/23748848", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("en", "uk"), |
|
|
url="https://ndownloader.figshare.com/files/23748851", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("es", "fr"), |
|
|
url="https://ndownloader.figshare.com/files/23748857", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("fr", "ru"), |
|
|
url="https://ndownloader.figshare.com/files/23748863", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("de", "fr"), |
|
|
url="https://ndownloader.figshare.com/files/23748872", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("en", "ja"), |
|
|
url="https://ndownloader.figshare.com/files/23748626", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("en", "es"), |
|
|
url="https://ndownloader.figshare.com/files/23748896", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("en", "fr"), |
|
|
url="https://ndownloader.figshare.com/files/23748944", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("de", "en"), |
|
|
url="https://ndownloader.figshare.com/files/23855657", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("en", "ko"), |
|
|
url="https://ndownloader.figshare.com/files/23748689", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("fr", "ja"), |
|
|
url="https://ndownloader.figshare.com/files/23748866", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("en", "zh"), |
|
|
url="https://ndownloader.figshare.com/files/23748779", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("en", "ru"), |
|
|
url="https://ndownloader.figshare.com/files/23748704", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("fr", "ko"), |
|
|
url="https://ndownloader.figshare.com/files/23855408", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("ru", "uk"), |
|
|
url="https://ndownloader.figshare.com/files/23855465", |
|
|
), |
|
|
ParaPatConfig( |
|
|
language_pair=("en", "pt"), |
|
|
url="https://ndownloader.figshare.com/files/23855441", |
|
|
), |
|
|
] |
|
|
BUILDER_CONFIG_CLASS = ParaPatConfig |
|
|
|
|
|
def _info(self): |
|
|
source, target = self.config.language_pair |
|
|
|
|
|
if self.config.name in type1_datasets_features: |
|
|
features = datasets.Features( |
|
|
{ |
|
|
"index": datasets.Value("int32"), |
|
|
"family_id": datasets.Value("int32"), |
|
|
"translation": datasets.features.Translation(languages=(source, target)), |
|
|
} |
|
|
) |
|
|
elif self.config.name in type2_datasets_features: |
|
|
features = datasets.Features( |
|
|
{ |
|
|
"translation": datasets.features.Translation(languages=(source, target)), |
|
|
} |
|
|
) |
|
|
return datasets.DatasetInfo( |
|
|
|
|
|
description=_DESCRIPTION, |
|
|
|
|
|
features=features, |
|
|
|
|
|
|
|
|
|
|
|
supervised_keys=(source, target), |
|
|
|
|
|
homepage=_HOMEPAGE, |
|
|
|
|
|
license=_LICENSE, |
|
|
|
|
|
citation=_CITATION, |
|
|
) |
|
|
|
|
|
def _split_generators(self, dl_manager): |
|
|
"""Returns SplitGenerators.""" |
|
|
source, target = self.config.language_pair |
|
|
|
|
|
data_dir = dl_manager.download_and_extract(self.config.url) |
|
|
|
|
|
if self.config.name in type1_datasets_file: |
|
|
_TRAIN_FILE_NAME = data_dir |
|
|
else: |
|
|
name = self.config.name.replace("-", "_") |
|
|
_TRAIN_FILE_NAME = os.path.join(data_dir, f"{name}.tsv") |
|
|
|
|
|
return [ |
|
|
datasets.SplitGenerator( |
|
|
name=datasets.Split.TRAIN, |
|
|
|
|
|
gen_kwargs={ |
|
|
"filepath": _TRAIN_FILE_NAME, |
|
|
"split": "train", |
|
|
}, |
|
|
), |
|
|
] |
|
|
|
|
|
def _generate_examples(self, filepath, split): |
|
|
"""Yields examples.""" |
|
|
source, target = self.config.language_pair |
|
|
with open(filepath, encoding="utf-8") as f: |
|
|
if self.config.name in type1_datasets_features: |
|
|
data = csv.DictReader(f, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
|
for id_, row in enumerate(data): |
|
|
if row["src_lang"] + "-" + row["tgt_lang"] != self.config.name: |
|
|
continue |
|
|
yield id_, { |
|
|
"index": row["index"], |
|
|
"family_id": row["family_id"], |
|
|
"translation": {source: row["src_abs"], target: row["tgt_abs"]}, |
|
|
} |
|
|
else: |
|
|
data = csv.reader(f, delimiter="\t", quoting=csv.QUOTE_NONE) |
|
|
for id_, row in enumerate(data): |
|
|
yield id_, { |
|
|
"translation": {source: row[0], target: row[1]}, |
|
|
} |
|
|
|