# RoboChallenge Dataset ## Dataset Structure ### Available Tasks The dataset includes 30 diverse manipulation tasks (Table30): - `arrange_flowers` - `arrange_fruits_in_basket` - `arrange_paper_cups` - `clean_dining_table` - `fold_dishcloth` - `hang_toothbrush_cup` - `make_vegetarian_sandwich` - `move_objects_into_box` - `open_the_drawer` - `place_shoes_on_rack` - `plug_in_network_cable` - `pour_fries_into_plate` - `press_three_buttons` - `put_cup_on_coaster` - `put_opener_in_drawer` - `put_pen_into_pencil_case` - `scan_QR_code` - `search_green_boxes` - `set_the_plates` - `shred_scrap_paper` - `sort_books` - `sort_electronic_products` - `stack_bowls` - `stack_color_blocks` - `stick_tape_to_box` - `sweep_the_rubbish` - `turn_on_faucet` - `turn_on_light_switch` - `water_potted_plant` - `wipe_the_table` ### Hierarchy The dataset is organized by tasks, with each task containing multiple demonstration episodes: ``` . ├── / # e.g., arrange_flowers, fold_dishcloth │ ├── task_desc.json # Task description │ ├── meta/ # Task-level metadata │ │ ├── task_info.json │ └── data/ # Episode data │ ├── episode_000000/ # Individual episode │ │ ├── meta/ │ │ │ └── episode_meta.json # Episode metadata │ │ ├── states/ │ │ │ └── states.jsonl # Robot states │ │ └── videos/ │ │ ├── arm_realsense_rgb.mp4 # Arm-mounted camera │ │ ├── global_realsense_rgb.mp4 # Global view camera │ │ └── right_realsense_rgb.mp4 # Right-side camera (BEV) │ ├── episode_000001/ │ └── ... ├── convert_to_lerobot.py # Conversion script └── README.md ``` ### JSON File Format `task_info.json` ```json { "robot_id": "arx5_1", // Robot model identifier "task_desc": { "task_name": "arrange_flowers", // Task identifier "prompt": "insert the three flowers on the table into the vase one by one", "scoring": "...", // Scoring criteria "task_tag": [ // Task characteristics "repeated", "single-arm", "ARX5", "precise3d" ] }, "video_info": { "fps": 30, // Video frame rate "ext": "mp4", // Video format "encoding": { "vcodec": "libx264", // Video codec "pix_fmt": "yuv420p" // Pixel format } } } ``` `episode_meta.json` ```json { "episode_index": 0, // Episode number "start_time": 1750405586.3430033, // Unix timestamp (start) "end_time": 1750405642.5247612, // Unix timestamp (end) "frames": 1672 // Total video frames } ``` ## Convert to Lerobot While you can implement a custom Dataset class to read RoboChallenge data directly, **we strongly recommend converting to LeRobot format** to take advantage of [LeRobot](https://github.com/huggingface/lerobot)'s comprehensive data processing and loading utilities. The `convert_to_lerobot.py` script we provided generates a ready-to-use [LeRobot](https://github.com/huggingface/lerobot) dataset repository from RoboChallenge dataset. ### Prerequisites - Python 3.9+ with the following packages: - `lerobot` - `opencv-python` - `numpy` - Configure `$LEROBOT_HOME` (defaults to `~/.lerobot` if unset). ```bash pip install lerobot opencv-python numpy export LEROBOT_HOME="/path/to/lerobot_home" ``` ### Usage Run the converter from the repository root (or provide an absolute path): ```bash python convert_to_lerobot.py \ --repo-name example_repo \ --raw-dataset /path/to/example_dataset \ --frame-interval 1 ``` ### Output - Frames and metadata are saved to $LEROBOT_HOME/. - At the end, the script calls dataset.consolidate(run_compute_stats=False). If you require aggregated statistics, run it with run_compute_stats=True or execute a separate stats job.