File size: 25,338 Bytes
002ea66
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
import os
import re
import glob
import json
import random
import argparse
from tqdm import tqdm
from pathlib import Path
from collections import defaultdict

def parse_ground_truth(name):
    """Extract ground truth rotation axis and angle from filename or folder name"""
    # Remove file extension if present
    basename = name.split(".")[0] if "." in name else name
    
    parts = basename.split("_")
    if len(parts) >= 4:  # figXXXX_XXX_axis_angle
        rotation_axis = parts[-2]  # Second to last element is axis
        rotation_angle = int(parts[-1])  # Last element is angle
        
        # Convert negative angles to 0-360 range
        if rotation_angle < 0:
            rotation_angle += 360
            
        return rotation_axis, rotation_angle
    
    print(f"Warning: Could not parse name: {basename}")
    return None, None

def load_examples(example_dir, generation_mode):
    """Load example images from the example directory"""
    if generation_mode == "combined":
        # Load all single PNG files from the example directory
        files = glob.glob(os.path.join(example_dir, "*.png"))
        print(f"Found {len(files)} combined example images in {example_dir}")
        return files
    else:  # separate mode
        # Find all folders in the example directory
        folders = [f for f in glob.glob(os.path.join(example_dir, "*")) if os.path.isdir(f)]
        # Filter folders that contain both _ini.png and _rot.png files
        valid_folders = []
        for folder in folders:
            folder_name = os.path.basename(folder)
            ini_file = os.path.join(folder, f"{folder_name}_ini.png")
            rot_file = os.path.join(folder, f"{folder_name}_rot.png")
            if os.path.exists(ini_file) and os.path.exists(rot_file):
                valid_folders.append(folder)
        
        print(f"Found {len(valid_folders)} example folder pairs in {example_dir}")
        return valid_folders

def organize_examples(examples, generation_mode):
    """Organize examples by rotation axis and angle"""
    organized = defaultdict(list)
    for example in examples:
        basename = os.path.basename(example)
        if generation_mode == "combined":
            basename = basename.split(".")[0]
            
        axis, angle = parse_ground_truth(basename)
        if axis is None or angle is None:
            continue
            
        key = (axis, angle)
        organized[key].append(example)
    
    # Print statistics
    print("\nDistribution of examples by axis-angle:")
    for key, examples_list in organized.items():
        print(f"  {key[0]}-axis, {key[1]} degrees: {len(examples_list)} examples")
    
    return dict(organized)

def select_examples(organized_examples, test_axis, possible_angles, max_examples=1):
    """Select a single random example for the test case"""
    # Collect all examples for this axis regardless of angle
    all_examples_for_axis = []
    for (axis, angle), example_list in organized_examples.items():
        if axis == test_axis:
            for example in example_list:
                all_examples_for_axis.append((example, angle))
    
    # If we have any examples for this axis, select one randomly
    examples = []
    if all_examples_for_axis:
        selected_example = random.choice(all_examples_for_axis)
        examples.append(selected_example)
    else:
        print(f"Warning: No examples found for rotation around {test_axis}-axis")
            
    return examples

def construct_icl_prompt(axis, possible_angles, icl_examples, difficulty="easy", generation_mode="combined"):
    """Create prompt with in-context learning examples for the VLM"""
    # Generate list of all possible rotation angles based on angle increment
    '''possible_angles = []
    current_angle = 0 + angle_increment
    while current_angle < 360:
        possible_angles.append(current_angle)
        current_angle += angle_increment'''
    
    # Common instructions for both modes
    coordinate_system = (
        f"The 3D Cartesian coordinate system is defined as follows: "
        f"\n- x-axis: points horizontally from left to right (positive direction is right)"
        f"\n- y-axis: points vertically from bottom to top (positive direction is up)"
        f"\n- z-axis: points from inside the image toward the viewer (positive direction is out of the screen)"
        f"\n- The origin (0,0,0) is located at the geometric center of the 3D object mesh"
        f"\n\nWhen discussing rotations around an axis, imagine looking along the positive direction of that axis (as if looking from the origin toward the positive end)."
    )
    
    angle_constraints = (
        f"The rotation angle is one of these specific values: {possible_angles} degrees. "
        f"A positive angle means rotation in the CLOCKWISE direction when looking along the positive direction of the axis. "
    )
    
    # Create example section of the prompt (singular!)
    examples_text = "\n### EXAMPLE OF ROTATION ###\n"
    for idx, (_, angle) in enumerate(icl_examples):
        if generation_mode == "combined":
            img_num = idx + 1
            examples_text += f"\nExample: Image {img_num} shows a 3D object with its left half showing the initial view and right half showing a {angle} degree rotation around the {axis}-axis.\n"
        else:  # separate mode
            img_num_start = idx * 2 + 1
            img_num_end = idx * 2 + 2
            examples_text += f"\nExample: Image {img_num_start} shows the initial view and Image {img_num_end} shows the object after a {angle} degree rotation around the {axis}-axis.\n"
    
    # Different instructions based on difficulty
    if difficulty == "easy":
        # For easy mode - axis is provided
        thinking_instructions = (
            f"IMPORTANT: Please follow this systematic approach to determine the rotation angle:"
            f"\n\n1. First, analyze the object's features in both views to understand its structure."
            f"\n\n2. For the {axis}-axis rotation, you must evaluate ONLY these possible rotation angles: {possible_angles}"
            f"\n   - For each angle in the list, describe what the object would look like after rotating around the {axis}-axis by that amount"
            f"\n   - Compare these descriptions with the actual second view"
            f"\n   - DO NOT make a decision until you have evaluated all possible angles in the list"
            f"\n\n3. After evaluating all angles, choose the one that best matches the observed changes"
            f"\n\n4. Verify your answer by mentally applying the rotation to confirm it matches the second view"
        )
        
        response_format = (
            f"Place your detailed reasoning process in <think></think> tags. Your reasoning should include:"
            f"\n- Systematic evaluation of possible rotation angles from the provided list"
            f"\n- Specific visual features you used to determine your answer"
            f"\n\nThen provide your final answer in <rotation_angle></rotation_angle> tags (use only a number from the list for angle)."
            f"\ni.e., <think> your reasoning process here </think><rotation_angle> your predicted degrees here </rotation_angle>"
        )
        
        task_description = (
            f"Your task is to determine the angle of rotation around the {axis}-axis in degrees."
        )
        
    else:  # hard mode - axis is not provided
        thinking_instructions = (
            f"IMPORTANT: Please follow this systematic approach to determine the rotation:"
            f"\n\n1. First, analyze the object's features in both views to understand its structure."
            f"\n\n2. Consider what would happen if rotation occurred around each of the three axes (x, y, and z):"
            f"\n   - For x-axis rotation: What specific features would change and how?"
            f"\n   - For y-axis rotation: What specific features would change and how?"
            f"\n   - For z-axis rotation: What specific features would change and how?"
            f"\n   - Based on the observed changes, explain which axis makes the most sense and why."
            f"\n\n3. Once you've determined the most likely axis, evaluate ALL of these possible rotation angles: {possible_angles}"
            f"\n   - For each angle in the list, describe what the object would look like after rotating around your chosen axis by that amount"
            f"\n   - Compare these descriptions with the actual second view"
            f"\n   - DO NOT make a decision until you have evaluated all angles in the list"
            f"\n\n4. After evaluating all angles, choose the one that best matches the observed changes"
        )
        
        response_format = (
            f"Place your detailed reasoning process in <think></think> tags. Your reasoning should include:"
            f"\n- Analysis of how rotation around each axis would affect the object"
            f"\n- Systematic evaluation of possible rotation angles from the provided list"
            f"\n- Specific visual features you used to determine your answer"
            f"\n\nThen provide your final answer in <rotation_axis></rotation_axis> and <rotation_angle></rotation_angle> tags respectively (use only x, y, or z for axis and only a number from the list for angle)."
            f"\ni.e., <think> your reasoning process here </think><rotation_axis> your predicted axis here </rotation_axis><rotation_angle> your predicted degrees here </rotation_angle>"
        )
        
        task_description = (
            f"Your task is to determine which axis the object was rotated around and by what angle."
        )
    
    # Generate the prompt based on generation mode
    if generation_mode == "combined":
        test_img_num = len(icl_examples) + 1
        prompt = (
            f"IMPORTANT: I'm showing you multiple images of 3D objects. "
            f"The test case (final image) contains TWO separate 3D renderings side-by-side. "
            f"\n\nThe LEFT HALF shows a 3D object in its initial orientation. "
            f"The RIGHT HALF shows the SAME 3D object after being rotated. "
            f"\n\nYour task is to determine the angle of rotation around the {axis}-axis in degrees."            
            f"\n\n{coordinate_system}"
            f"\n\n{angle_constraints}"            
            f"\n\n{examples_text}"            
            f"\n\n### YOUR TASK ###"
            f"\nNow, for Image {test_img_num}, determine the angle of rotation around the {axis}-axis."
            f"\nBased on the examples provided, analyze Image {test_img_num} carefully."            
            f"\n\n{thinking_instructions}"            
            f"\n\n{response_format}"
        )
    else:  # separate mode
        test_img_start = len(icl_examples) * 2 + 1
        test_img_end = len(icl_examples) * 2 + 2
        prompt = (
            f"I'm showing you multiple images of 3D objects. "
            f"For each example or test case, two images represent the same object before and after rotation."
            f"\n\nYour task is to determine the angle of rotation around the {axis}-axis in degrees."            
            f"\n\n{coordinate_system}"
            f"\n\n{angle_constraints}"           
            f"\n\n{examples_text}"            
            f"\n\n### YOUR TASK ###"
            f"\nNow, determine the angle of rotation around the {axis}-axis from Image {test_img_start} to Image {test_img_end}."
            f"\nBased on the examples provided, analyze the rotation carefully."            
            f"\n\n{thinking_instructions}"            
            f"\n\n{response_format}"
        )
            
    return prompt

def create_metadata_jsonl_combined_icl(input_dir, example_dir, output_file, possible_angles=[45, 315], difficulty="easy", max_examples=3):
    """Create metadata JSONL file for all images in input_dir with in-context learning examples (combined mode)"""
    # Get all PNG files in the input directory
    png_files = glob.glob(os.path.join(input_dir, "*.png"))
    
    # Sort files to ensure consistent order
    png_files = sorted(png_files)
    
    if not png_files:
        print(f"No PNG files found in {input_dir}")
        return
    
    print(f"Found {len(png_files)} PNG files in {input_dir}")
    
    # Load example images
    examples = load_examples(example_dir, "combined")
    
    # Organize examples by axis and angle
    organized_examples = organize_examples(examples, "combined")
    
    # Create output directory if it doesn't exist
    output_dir = os.path.dirname(output_file)
    os.makedirs(output_dir, exist_ok=True)
    
    # Get the last folder name from the input directory
    last_folder = os.path.basename(os.path.normpath(input_dir))
    
    # Define the target base directory
    target_base_dir = f"/lustre/fsw/portfolios/av/users/shiyil/yunfei/MM-EUREKA/data/{last_folder}"
    
    # Example directory - assume it's the "examples" subdirectory of input_dir
    target_example_dir = f"{target_base_dir}/examples"
    
    # Generate list of all possible rotation angles
    '''possible_angles = []
    current_angle = 0 + angle_increment
    while current_angle < 360:
        possible_angles.append(current_angle)
        current_angle += angle_increment'''
    
    # Process each file and create metadata entries
    entries = []
    
    for png_file in tqdm(png_files, desc="Creating metadata for combined mode with ICL"):
        # Parse ground truth from filename
        axis, angle = parse_ground_truth(os.path.basename(png_file))
        
        if axis is None or angle is None:
            print(f"Skipping {png_file} - could not parse ground truth")
            continue
        
        # Get the basename
        basename = os.path.basename(png_file)
        
        # Create the new image path for the target system
        target_image_path = f"{target_base_dir}/{basename}"
        
        # Select in-context examples for this test case
        icl_examples = select_examples(organized_examples, axis, possible_angles, max_examples)
        
        # Skip if no examples found
        if not icl_examples:
            print(f"Skipping {png_file} - no suitable examples found")
            continue
            
        # Construct prompt with in-context examples
        prompt = construct_icl_prompt(axis, possible_angles, icl_examples, difficulty, generation_mode="combined")
        
        # Create answer format based on difficulty WITH image path
        if difficulty == "easy":
            # For easy mode, only include angle in the answer (axis is provided in the prompt)
            answer = f"<angle>{angle}</angle><image_path>{target_image_path}</image_path>"
        else:
            # For hard mode, include both axis and angle
            answer = f"<axis>{axis}</axis><angle>{angle}</angle><image_path>{target_image_path}</image_path>"
        
        # Create content array with example images and test image
        content = []
        
        # Add example images
        for example_path, _ in icl_examples:
            example_basename = os.path.basename(example_path)
            target_example_path = f"{target_example_dir}/{example_basename}"
            content.append({"type": "image", "image": target_example_path})
        
        # Add test image
        content.append({"type": "image", "image": target_image_path})
        
        # Add prompt text
        content.append({"type": "text", "text": prompt})
        
        # Create entry with the content array
        entry = {
            "message": json.dumps([{
                "role": "user",
                "content": content
            }]),
            "answer": answer
        }
        
        entries.append(entry)
    
    # Write entries to JSONL file
    with open(output_file, 'w') as f:
        for entry in entries:
            f.write(json.dumps(entry) + '\n')
    
    print(f"\nSummary for combined mode with ICL:")
    print(f"  Found {len(png_files)} PNG files")
    print(f"  Created metadata for {len(entries)} entries")
    print(f"  Output file: {output_file}")
    print(f"  Image paths are set to: {target_base_dir}/[filename].png")
    print(f"  Example paths are set to: {target_example_dir}/[filename].png")

def create_metadata_jsonl_separate_icl(input_dir, example_dir, output_file, possible_angles=[45, 315], difficulty="easy", max_examples=3):
    """Create metadata JSONL file for folders in input_dir with in-context learning examples (separate mode)"""
    # Get all directories in the input directory (excluding the examples directory)
    folders = [f for f in glob.glob(os.path.join(input_dir, "*")) 
              if os.path.isdir(f) and os.path.basename(f) != "examples"]
    
    # Sort folders to ensure consistent order
    folders = sorted(folders)
    
    if not folders:
        print(f"No folders found in {input_dir}")
        return
    
    print(f"Found {len(folders)} folders in {input_dir}")
    
    # Load example folders
    examples = load_examples(example_dir, "separate")
    
    # Organize examples by axis and angle
    organized_examples = organize_examples(examples, "separate")
    
    # Create output directory if it doesn't exist
    output_dir = os.path.dirname(output_file)
    os.makedirs(output_dir, exist_ok=True)
    
    # Get the last folder name from the input directory
    last_folder = os.path.basename(os.path.normpath(input_dir))
    
    # Define the target base directory
    target_base_dir = f"/lustre/fsw/portfolios/av/users/shiyil/yunfei/MM-EUREKA/data/{last_folder}"
    
    # Example directory is always a subdirectory called 'examples'
    target_example_dir = f"{target_base_dir}/examples"
    
    # Generate list of all possible rotation angles
    '''possible_angles = []
    current_angle = 0 + angle_increment
    while current_angle < 360:
        possible_angles.append(current_angle)
        current_angle += angle_increment'''
    
    # Process each folder and create metadata entries
    entries = []
    valid_folders = 0
    
    for folder in tqdm(folders, desc="Creating metadata for separate mode with ICL"):
        folder_name = os.path.basename(folder)
        
        # Parse ground truth from folder name
        axis, angle = parse_ground_truth(folder_name)
        
        if axis is None or angle is None:
            print(f"Skipping {folder} - could not parse ground truth")
            continue
        
        # Check for the two required images in the folder
        ini_path = os.path.join(folder, f"{folder_name}_ini.png")
        rot_path = os.path.join(folder, f"{folder_name}_rot.png")
        
        if not os.path.exists(ini_path):
            print(f"Skipping {folder} - missing initial view image")
            continue
            
        if not os.path.exists(rot_path):
            print(f"Skipping {folder} - missing rotated view image")
            continue
        
        # Create target paths for remote system
        target_folder_path = f"{target_base_dir}/{folder_name}"
        target_ini_path = f"{target_folder_path}/{folder_name}_ini.png"
        target_rot_path = f"{target_folder_path}/{folder_name}_rot.png"
        
        # Select in-context examples for this test case
        icl_examples = select_examples(organized_examples, axis, possible_angles, max_examples)
        
        # Skip if no examples found
        if not icl_examples:
            print(f"Skipping {folder} - no suitable examples found")
            continue
            
        # Construct prompt with in-context examples
        prompt = construct_icl_prompt(axis, possible_angles, icl_examples, difficulty, generation_mode="separate")
        
        # Create answer format based on difficulty WITH folder path
        if difficulty == "easy":
            # For easy mode, only include angle in the answer (axis is provided in the prompt)
            answer = f"<angle>{angle}</angle><image_path>{target_folder_path}</image_path>"
        else:
            # For hard mode, include both axis and angle
            answer = f"<axis>{axis}</axis><angle>{angle}</angle><image_path>{target_folder_path}</image_path>"
        
        # Create content array with example images and test images
        content = []
        
        # Add example image pairs
        for example_folder, _ in icl_examples:
            example_name = os.path.basename(example_folder)
            target_example_ini = f"{target_example_dir}/{example_name}/{example_name}_ini.png"
            target_example_rot = f"{target_example_dir}/{example_name}/{example_name}_rot.png"
            
            content.append({"type": "image", "image": target_example_ini})
            content.append({"type": "image", "image": target_example_rot})
        
        # Add test image pair
        content.append({"type": "image", "image": target_ini_path})
        content.append({"type": "image", "image": target_rot_path})
        
        # Add prompt text
        content.append({"type": "text", "text": prompt})
        
        # Create entry with both image paths
        entry = {
            "message": json.dumps([{
                "role": "user",
                "content": content
            }]),
            "answer": answer
        }
        
        entries.append(entry)
        valid_folders += 1
    
    # Write entries to JSONL file
    with open(output_file, 'w') as f:
        for entry in entries:
            f.write(json.dumps(entry) + '\n')
    
    print(f"\nSummary for separate mode with ICL:")
    print(f"  Found {len(folders)} folders")
    print(f"  Created metadata for {valid_folders} valid folders")
    print(f"  Output file: {output_file}")
    print(f"  Image paths format: {target_base_dir}/[folder_name]/[folder_name]_[ini/rot].png")
    print(f"  Example paths format: {target_example_dir}/[folder_name]/[folder_name]_[ini/rot].png")

def main():
    parser = argparse.ArgumentParser(description="Create metadata JSONL for rotation dataset with in-context learning")
    parser.add_argument('--input-dir', type=str, required=True,
                      help="Directory containing rotation dataset images or folders")
    parser.add_argument('--example-dir', type=str, required=True,
                      help="Directory containing example images or folders for in-context learning")
    parser.add_argument('--output-file', type=str, default="rotation_metadata_icl.jsonl",
                      help="Output JSONL file path")
    parser.add_argument('--possible-angles', type=int, nargs='+', default=[45, 315],
                      help="List of possible rotation angles in degrees (e.g., 45 315)")
    parser.add_argument('--difficulty', type=str, choices=["easy", "hard"], default="easy",
                      help="Difficulty mode: easy (axis provided) or hard (axis not provided)")
    parser.add_argument('--generation-mode', type=str, choices=["combined", "separate"], default="combined",
                      help="Mode for dataset generation (combined = one image with both views, separate = folder with two images)")
    parser.add_argument('--max-examples', type=int, default=1,
                      help="Maximum number of examples to include for each test case (default: 1)")
    parser.add_argument('--random-seed', type=int, default=None,
                      help="Random seed for example selection (None for true randomness)")
    
    args = parser.parse_args()
    
    # Set random seed for reproducibility (or use None for true randomness)
    random.seed(args.random_seed)
    
    print(f"Creating metadata JSONL for rotation dataset with in-context learning:")
    print(f"Input directory: {args.input_dir}")
    print(f"Example directory: {args.example_dir}")
    print(f"Output file: {args.output_file}")
    print(f"Possible angles: {args.possible_angles}")
    print(f"Difficulty mode: {args.difficulty}")
    print(f"Generation mode: {args.generation_mode}")
    print(f"Max examples per test case: {args.max_examples}")
    
    if args.random_seed is not None:
        print(f"Using fixed random seed: {args.random_seed}")
    else:
        print("Using true randomness (different examples selection each run)")

    # Fix the indentation error here:
    if args.example_dir is None and os.path.exists(os.path.join(args.input_dir, "examples")):
        args.example_dir = os.path.join(args.input_dir, "examples")
        print(f"Using examples directory: {args.example_dir}")
    
    if args.generation_mode == "combined":
        create_metadata_jsonl_combined_icl(
            input_dir=args.input_dir,
            example_dir=args.example_dir,
            output_file=args.output_file,
            possible_angles=args.possible_angles,  # Updated from angle_increment
            difficulty=args.difficulty,
            max_examples=args.max_examples
        )
    else:  # separate mode
        create_metadata_jsonl_separate_icl(
            input_dir=args.input_dir,
            example_dir=args.example_dir,
            output_file=args.output_file,
            possible_angles=args.possible_angles,  # Updated from angle_increment
            difficulty=args.difficulty,
            max_examples=args.max_examples
        )
if __name__ == "__main__":
    main()