|
|
import os |
|
|
import re |
|
|
import glob |
|
|
import json |
|
|
import argparse |
|
|
import random |
|
|
import uuid |
|
|
from tqdm import tqdm |
|
|
from pathlib import Path |
|
|
from collections import defaultdict |
|
|
|
|
|
def parse_ground_truth(name): |
|
|
"""Extract ground truth rotation axis and angle from filename or folder name""" |
|
|
|
|
|
basename = name.split(".")[0] if "." in name else name |
|
|
|
|
|
parts = basename.split("_") |
|
|
if len(parts) >= 4: |
|
|
rotation_axis = parts[-2] |
|
|
rotation_angle = int(parts[-1]) |
|
|
|
|
|
|
|
|
if rotation_angle < 0: |
|
|
rotation_angle += 360 |
|
|
|
|
|
return rotation_axis, rotation_angle |
|
|
|
|
|
print(f"Warning: Could not parse name: {basename}") |
|
|
return None, None |
|
|
|
|
|
def load_examples(example_dir, generation_mode): |
|
|
"""Load example images from the example directory""" |
|
|
if generation_mode == "combined": |
|
|
|
|
|
files = glob.glob(os.path.join(example_dir, "*.png")) |
|
|
print(f"Found {len(files)} combined example images in {example_dir}") |
|
|
return files |
|
|
else: |
|
|
|
|
|
folders = [f for f in glob.glob(os.path.join(example_dir, "*")) if os.path.isdir(f)] |
|
|
|
|
|
valid_folders = [] |
|
|
for folder in folders: |
|
|
folder_name = os.path.basename(folder) |
|
|
ini_file = os.path.join(folder, f"{folder_name}_ini.png") |
|
|
rot_file = os.path.join(folder, f"{folder_name}_rot.png") |
|
|
if os.path.exists(ini_file) and os.path.exists(rot_file): |
|
|
valid_folders.append(folder) |
|
|
|
|
|
print(f"Found {len(valid_folders)} example folder pairs in {example_dir}") |
|
|
return valid_folders |
|
|
|
|
|
def organize_examples(examples, generation_mode): |
|
|
"""Organize examples by rotation axis and angle""" |
|
|
organized = defaultdict(list) |
|
|
for example in examples: |
|
|
basename = os.path.basename(example) |
|
|
if generation_mode == "combined": |
|
|
basename = basename.split(".")[0] |
|
|
|
|
|
axis, angle = parse_ground_truth(basename) |
|
|
if axis is None or angle is None: |
|
|
continue |
|
|
|
|
|
key = (axis, angle) |
|
|
organized[key].append(example) |
|
|
|
|
|
|
|
|
print("\nDistribution of examples by axis-angle:") |
|
|
for key, examples_list in organized.items(): |
|
|
print(f" {key[0]}-axis, {key[1]} degrees: {len(examples_list)} examples") |
|
|
|
|
|
return dict(organized) |
|
|
|
|
|
def select_example(organized_examples, test_axis): |
|
|
"""Select a single random example for the test case""" |
|
|
|
|
|
all_examples_for_axis = [] |
|
|
for (axis, angle), example_list in organized_examples.items(): |
|
|
if axis == test_axis: |
|
|
for example in example_list: |
|
|
all_examples_for_axis.append((example, angle)) |
|
|
|
|
|
|
|
|
if all_examples_for_axis and len(all_examples_for_axis) > 0: |
|
|
return random.choice(all_examples_for_axis) |
|
|
else: |
|
|
print(f"Warning: No examples found for rotation around {test_axis}-axis") |
|
|
return None |
|
|
|
|
|
def construct_prompt_with_example(axis, angle_increment, example=None, difficulty="easy", generation_mode="combined"): |
|
|
"""Create prompt for the VLM with an in-context example""" |
|
|
|
|
|
possible_angles = [] |
|
|
current_angle = 0 + angle_increment |
|
|
while current_angle < 360: |
|
|
possible_angles.append(current_angle) |
|
|
current_angle += angle_increment |
|
|
|
|
|
|
|
|
coordinate_system = ( |
|
|
f"The 3D Cartesian coordinate system is defined as follows: " |
|
|
f"\n- x-axis: points horizontally from left to right (positive direction is right)" |
|
|
f"\n- y-axis: points vertically from bottom to top (positive direction is up)" |
|
|
f"\n- z-axis: points from inside the image toward the viewer (positive direction is out of the screen)" |
|
|
f"\n\nWhen discussing rotations around an axis, imagine looking along the positive direction of that axis (as if looking from the origin toward the positive end)." |
|
|
) |
|
|
|
|
|
angle_constraints = ( |
|
|
f"The rotation angle is always a multiple of {angle_increment} degrees between 0 and 360 degrees inclusive. " |
|
|
f"A positive angle means rotation in the CLOCKWISE direction when looking along the positive direction of the axis. " |
|
|
) |
|
|
|
|
|
|
|
|
example_text = "" |
|
|
if example: |
|
|
_, example_angle = example |
|
|
if generation_mode == "combined": |
|
|
example_text = f"\n### EXAMPLE OF ROTATION ###\n\nExample: Image 1 shows a 3D object with its left half showing the initial view and right half showing a {example_angle} degree rotation around the {axis}-axis.\n" |
|
|
else: |
|
|
example_text = f"\n### EXAMPLE OF ROTATION ###\n\nExample: Image 1 shows the initial view and Image 2 shows the object after a {example_angle} degree rotation around the {axis}-axis.\n" |
|
|
|
|
|
|
|
|
if difficulty == "easy": |
|
|
|
|
|
thinking_instructions = ( |
|
|
f"IMPORTANT: Please follow this systematic approach to determine the rotation angle:" |
|
|
f"\n\n1. First, analyze the object's features in both views to understand its structure." |
|
|
f"\n\n2. For the {axis}-axis rotation, you must evaluate ALL of these possible rotation angles: {possible_angles}" |
|
|
f"\n - For each angle in the list, mentally visualize what the object would look like after rotating around the {axis}-axis by that amount" |
|
|
f"\n - Compare these visualizations with the actual second view" |
|
|
f"\n - DO NOT make a decision until you have evaluated all possible angles in the list" |
|
|
f"\n\n3. After evaluating all angles, choose the one that best matches the observed changes" |
|
|
f"\n\n4. Verify your answer by mentally applying the rotation to confirm it matches the second view" |
|
|
) |
|
|
|
|
|
|
|
|
response_format = ( |
|
|
f"IMPORTANT: You must ONLY output the rotation angle as a number from this list: {possible_angles}. " |
|
|
f"Your output should contain ONLY the number. " |
|
|
f"Do NOT include any reasoning, explanation, or additional text - ONLY the number." |
|
|
f"\n\nExample of correct output format: 30" |
|
|
f"\n\nIncorrect output formats:" |
|
|
f"\n\"I think it's 30 degrees\"" |
|
|
f"\n\"The rotation angle is 30\"" |
|
|
f"\n\"30 degrees\"" |
|
|
) |
|
|
|
|
|
task_description = ( |
|
|
f"Your task is to determine the angle of rotation around the {axis}-axis in degrees." |
|
|
) |
|
|
|
|
|
else: |
|
|
thinking_instructions = ( |
|
|
f"IMPORTANT: Please follow this systematic approach to determine the rotation:" |
|
|
f"\n\n1. First, analyze the object's features in both views to understand its structure." |
|
|
f"\n\n2. Consider what would happen if rotation occurred around each of the three axes (x, y, and z):" |
|
|
f"\n - For x-axis rotation: What specific features would change and how?" |
|
|
f"\n - For y-axis rotation: What specific features would change and how?" |
|
|
f"\n - For z-axis rotation: What specific features would change and how?" |
|
|
f"\n - Based on the observed changes, explain which axis makes the most sense and why." |
|
|
f"\n\n3. Once you've determined the most likely axis, evaluate ALL of these possible rotation angles: {possible_angles}" |
|
|
f"\n - For each angle in the list, describe what the object would look like after rotating around your chosen axis by that amount" |
|
|
f"\n - Compare these descriptions with the actual second view" |
|
|
f"\n - DO NOT make a decision until you have evaluated all angles in the list" |
|
|
f"\n\n4. After evaluating all angles, choose the one that best matches the observed changes" |
|
|
) |
|
|
|
|
|
response_format = ( |
|
|
f"Place your detailed reasoning process in <thinking></thinking> tags. Your reasoning should include:" |
|
|
f"\n- Analysis of how rotation around each axis would affect the object" |
|
|
f"\n- Systematic evaluation of possible rotation angles from the provided list" |
|
|
f"\n- Specific visual features you used to determine your answer" |
|
|
f"\n\nThen provide your final answer in <rotation_axis></rotation_axis> and <rotation_angle></rotation_angle> tags respectively (use only x, y, or z for axis and only a number from the list for angle)." |
|
|
f"\ni.e., <thinking> your reasoning process here </thinking><rotation_axis> your predicted axis here </rotation_axis><rotation_angle> your predicted degrees here </rotation_angle>" |
|
|
) |
|
|
|
|
|
task_description = ( |
|
|
f"Your task is to determine which axis the object was rotated around and by what angle." |
|
|
) |
|
|
|
|
|
|
|
|
if generation_mode == "combined": |
|
|
test_img_num = 2 if example else 1 |
|
|
prompt = ( |
|
|
f"IMPORTANT: I'm showing you {2 if example else 1} image{'s' if example else ''} of 3D objects. " |
|
|
f"{'Each' if example else 'The'} image contains TWO separate 3D renderings side-by-side. " |
|
|
f"\n\nThe LEFT HALF shows a 3D object in its initial orientation. " |
|
|
f"The RIGHT HALF shows the SAME 3D object after being rotated." |
|
|
f"\n\n{task_description}" |
|
|
f"\n\n{coordinate_system}" |
|
|
f"\n\n{angle_constraints}" |
|
|
f"\n\n{example_text}" |
|
|
f"\n\n### YOUR TASK ###" |
|
|
f"\nNow, for Image {test_img_num}, determine the angle of rotation around the {axis}-axis." |
|
|
f"\n{'' if not example else 'Based on the example provided, '}analyze Image {test_img_num} carefully." |
|
|
f"\n\n{thinking_instructions}" |
|
|
f"\n\n{response_format}" |
|
|
) |
|
|
else: |
|
|
|
|
|
test_img_start = 3 if example else 1 |
|
|
test_img_end = 4 if example else 2 |
|
|
prompt = ( |
|
|
f"I'm showing you {4 if example else 2} images of 3D objects. " |
|
|
f"{'For each example or test case, ' if example else ''}two images represent the same object before and after rotation." |
|
|
f"\n\n{task_description}" |
|
|
f"\n\n{coordinate_system}" |
|
|
f"\n\n{angle_constraints}" |
|
|
f"\n\n{example_text}" |
|
|
f"\n\n### YOUR TASK ###" |
|
|
f"\nNow, determine the angle of rotation around the {axis}-axis from Image {test_img_start} to Image {test_img_end}." |
|
|
f"\n{'' if not example else 'Based on the example provided, '}analyze the rotation carefully." |
|
|
f"\n\n{thinking_instructions}" |
|
|
f"\n\n{response_format}" |
|
|
) |
|
|
|
|
|
return prompt |
|
|
|
|
|
def create_metadata_jsonl_combined(input_dir, output_file, example_dir=None, angle_increment=30, difficulty="easy"): |
|
|
"""Create metadata JSONL file for all images in input_dir (combined mode)""" |
|
|
|
|
|
png_files = glob.glob(os.path.join(input_dir, "*.png")) |
|
|
|
|
|
|
|
|
png_files = sorted(png_files) |
|
|
|
|
|
if not png_files: |
|
|
print(f"No PNG files found in {input_dir}") |
|
|
return |
|
|
|
|
|
print(f"Found {len(png_files)} PNG files in {input_dir}") |
|
|
|
|
|
|
|
|
organized_examples = None |
|
|
if example_dir: |
|
|
examples = load_examples(example_dir, "combined") |
|
|
organized_examples = organize_examples(examples, "combined") |
|
|
|
|
|
|
|
|
output_dir = os.path.dirname(output_file) |
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
entries = [] |
|
|
|
|
|
for png_file in tqdm(png_files, desc="Creating metadata for combined mode"): |
|
|
|
|
|
axis, angle = parse_ground_truth(os.path.basename(png_file)) |
|
|
|
|
|
if axis is None or angle is None: |
|
|
print(f"Skipping {png_file} - could not parse ground truth") |
|
|
continue |
|
|
|
|
|
|
|
|
rel_path = os.path.relpath(png_file, os.path.dirname(output_file)) |
|
|
|
|
|
|
|
|
image_base_id = os.path.splitext(os.path.basename(png_file))[0] |
|
|
|
|
|
|
|
|
example = None |
|
|
if organized_examples: |
|
|
example = select_example(organized_examples, axis) |
|
|
|
|
|
|
|
|
prompt = construct_prompt_with_example(axis, angle_increment, example, difficulty, generation_mode="combined") |
|
|
|
|
|
|
|
|
if difficulty == "easy": |
|
|
|
|
|
assistant_content = f"{angle}" |
|
|
else: |
|
|
|
|
|
assistant_content = f"<thinking>Detailed reasoning about rotation axis and angle...</thinking><rotation_axis>{axis}</rotation_axis><rotation_angle>{angle}</rotation_angle>" |
|
|
|
|
|
|
|
|
conversations = [] |
|
|
|
|
|
|
|
|
human_value = "" |
|
|
|
|
|
|
|
|
if example: |
|
|
example_path, _ = example |
|
|
example_rel_path = os.path.relpath(example_path, os.path.dirname(output_file)) |
|
|
human_value += f"<image>{example_rel_path}</image>\n" |
|
|
|
|
|
|
|
|
human_value += f"<image>{rel_path}</image>\n{prompt}" |
|
|
|
|
|
conversations.append({ |
|
|
"from": "human", |
|
|
"value": human_value |
|
|
}) |
|
|
|
|
|
|
|
|
conversations.append({ |
|
|
"from": "gpt", |
|
|
"value": assistant_content |
|
|
}) |
|
|
|
|
|
|
|
|
entry = { |
|
|
"id": image_base_id, |
|
|
"image": rel_path, |
|
|
"conversations": conversations |
|
|
} |
|
|
|
|
|
entries.append(entry) |
|
|
|
|
|
|
|
|
with open(output_file, 'w') as f: |
|
|
for entry in entries: |
|
|
f.write(json.dumps(entry) + '\n') |
|
|
|
|
|
print(f"\nSummary for combined mode:") |
|
|
print(f" Found {len(png_files)} PNG files") |
|
|
print(f" Created metadata for {len(entries)} entries") |
|
|
print(f" Output file: {output_file}") |
|
|
|
|
|
def create_metadata_jsonl_separate(input_dir, output_file, example_dir=None, angle_increment=30, difficulty="easy"): |
|
|
"""Create metadata JSONL file for folders in input_dir (separate mode)""" |
|
|
|
|
|
folders = [f for f in glob.glob(os.path.join(input_dir, "*")) |
|
|
if os.path.isdir(f) and os.path.basename(f) != "examples"] |
|
|
|
|
|
|
|
|
folders = sorted(folders) |
|
|
|
|
|
if not folders: |
|
|
print(f"No folders found in {input_dir}") |
|
|
return |
|
|
|
|
|
print(f"Found {len(folders)} folders in {input_dir}") |
|
|
|
|
|
|
|
|
organized_examples = None |
|
|
if example_dir: |
|
|
examples = load_examples(example_dir, "separate") |
|
|
organized_examples = organize_examples(examples, "separate") |
|
|
|
|
|
|
|
|
output_dir = os.path.dirname(output_file) |
|
|
os.makedirs(output_dir, exist_ok=True) |
|
|
|
|
|
|
|
|
entries = [] |
|
|
valid_folders = 0 |
|
|
|
|
|
for folder in tqdm(folders, desc="Creating metadata for separate mode"): |
|
|
folder_name = os.path.basename(folder) |
|
|
|
|
|
|
|
|
axis, angle = parse_ground_truth(folder_name) |
|
|
|
|
|
if axis is None or angle is None: |
|
|
print(f"Skipping {folder} - could not parse ground truth") |
|
|
continue |
|
|
|
|
|
|
|
|
ini_path = os.path.join(folder, f"{folder_name}_ini.png") |
|
|
rot_path = os.path.join(folder, f"{folder_name}_rot.png") |
|
|
|
|
|
if not os.path.exists(ini_path): |
|
|
print(f"Skipping {folder} - missing initial view image") |
|
|
continue |
|
|
|
|
|
if not os.path.exists(rot_path): |
|
|
print(f"Skipping {folder} - missing rotated view image") |
|
|
continue |
|
|
|
|
|
|
|
|
rel_ini_path = os.path.relpath(ini_path, os.path.dirname(output_file)) |
|
|
rel_rot_path = os.path.relpath(rot_path, os.path.dirname(output_file)) |
|
|
|
|
|
|
|
|
example = None |
|
|
image_paths = [] |
|
|
|
|
|
if organized_examples: |
|
|
example = select_example(organized_examples, axis) |
|
|
|
|
|
|
|
|
prompt = construct_prompt_with_example(axis, angle_increment, example, difficulty, generation_mode="separate") |
|
|
|
|
|
|
|
|
if difficulty == "easy": |
|
|
|
|
|
assistant_content = f"{angle}" |
|
|
else: |
|
|
|
|
|
assistant_content = f"<thinking>Detailed reasoning about rotation axis and angle...</thinking><rotation_axis>{axis}</rotation_axis><rotation_angle>{angle}</rotation_angle>" |
|
|
|
|
|
|
|
|
conversations = [] |
|
|
|
|
|
|
|
|
all_image_paths = [] |
|
|
|
|
|
|
|
|
if example: |
|
|
example_folder, _ = example |
|
|
example_folder_name = os.path.basename(example_folder) |
|
|
example_ini_path = os.path.join(example_folder, f"{example_folder_name}_ini.png") |
|
|
example_rot_path = os.path.join(example_folder, f"{example_folder_name}_rot.png") |
|
|
|
|
|
example_rel_ini_path = os.path.relpath(example_ini_path, os.path.dirname(output_file)) |
|
|
example_rel_rot_path = os.path.relpath(example_rot_path, os.path.dirname(output_file)) |
|
|
|
|
|
all_image_paths.append(example_rel_ini_path) |
|
|
all_image_paths.append(example_rel_rot_path) |
|
|
|
|
|
|
|
|
all_image_paths.append(rel_ini_path) |
|
|
all_image_paths.append(rel_rot_path) |
|
|
|
|
|
|
|
|
human_value = "<image>\n<image>\n<image>\n<image>\n" + prompt |
|
|
|
|
|
conversations.append({ |
|
|
"from": "human", |
|
|
"value": human_value |
|
|
}) |
|
|
|
|
|
|
|
|
conversations.append({ |
|
|
"from": "gpt", |
|
|
"value": assistant_content |
|
|
}) |
|
|
|
|
|
|
|
|
entry = { |
|
|
"id": folder_name, |
|
|
"image": all_image_paths, |
|
|
"conversations": conversations |
|
|
} |
|
|
|
|
|
entries.append(entry) |
|
|
valid_folders += 1 |
|
|
|
|
|
|
|
|
with open(output_file, 'w') as f: |
|
|
for entry in entries: |
|
|
f.write(json.dumps(entry) + '\n') |
|
|
|
|
|
print(f"\nSummary for separate mode:") |
|
|
print(f" Found {len(folders)} folders") |
|
|
print(f" Created metadata for {valid_folders} valid folders") |
|
|
print(f" Output file: {output_file}") |
|
|
|
|
|
def main(): |
|
|
parser = argparse.ArgumentParser(description="Create metadata JSONL for rotation dataset") |
|
|
parser.add_argument('--input-dir', type=str, required=True, |
|
|
help="Directory containing rotation dataset images or folders") |
|
|
parser.add_argument('--output-file', type=str, default="metadata.jsonl", |
|
|
help="Output JSONL file path") |
|
|
parser.add_argument('--example-dir', type=str, default=None, |
|
|
help="Directory containing example images for in-context learning") |
|
|
parser.add_argument('--angle-increment', type=int, default=30, |
|
|
help="Angle increment used in the dataset (e.g., 30, 45, 90)") |
|
|
parser.add_argument('--difficulty', type=str, choices=["easy", "hard"], default="easy", |
|
|
help="Difficulty mode: easy (axis provided) or hard (axis not provided)") |
|
|
parser.add_argument('--generation-mode', type=str, choices=["combined", "separate"], default="combined", |
|
|
help="Mode for dataset generation (combined = one image with both views, separate = folder with two images)") |
|
|
parser.add_argument('--random-seed', type=int, default=None, |
|
|
help="Random seed for example selection (None for true randomness)") |
|
|
|
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
if args.random_seed is not None: |
|
|
print(f"Using fixed random seed: {args.random_seed}") |
|
|
random.seed(args.random_seed) |
|
|
else: |
|
|
print("Using true randomness (different examples each run)") |
|
|
|
|
|
print(f"Creating metadata JSONL for rotation dataset:") |
|
|
print(f"Input directory: {args.input_dir}") |
|
|
print(f"Output file: {args.output_file}") |
|
|
|
|
|
if args.example_dir: |
|
|
print(f"Example directory: {args.example_dir}") |
|
|
|
|
|
print(f"Angle increment: {args.angle_increment} degrees") |
|
|
print(f"Difficulty mode: {args.difficulty}") |
|
|
print(f"Generation mode: {args.generation_mode}") |
|
|
|
|
|
|
|
|
if args.example_dir is None and os.path.exists(os.path.join(args.input_dir, "examples")): |
|
|
args.example_dir = os.path.join(args.input_dir, "examples") |
|
|
print(f"Using examples directory: {args.example_dir}") |
|
|
|
|
|
if args.generation_mode == "combined": |
|
|
create_metadata_jsonl_combined( |
|
|
input_dir=args.input_dir, |
|
|
output_file=args.output_file, |
|
|
example_dir=args.example_dir, |
|
|
angle_increment=args.angle_increment, |
|
|
difficulty=args.difficulty |
|
|
) |
|
|
else: |
|
|
create_metadata_jsonl_separate( |
|
|
input_dir=args.input_dir, |
|
|
output_file=args.output_file, |
|
|
example_dir=args.example_dir, |
|
|
angle_increment=args.angle_increment, |
|
|
difficulty=args.difficulty |
|
|
) |
|
|
|
|
|
if __name__ == "__main__": |
|
|
main() |