Upload README.md with huggingface_hub
Browse files
README.md
CHANGED
|
@@ -13,9 +13,9 @@ tags:
|
|
| 13 |
- image-captioning
|
| 14 |
---
|
| 15 |
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
|
| 19 |
|
| 20 |
## Languages
|
| 21 |
|
|
@@ -24,25 +24,25 @@ fil, ind, tha, vie
|
|
| 24 |
## Supported Tasks
|
| 25 |
|
| 26 |
Image Captioning
|
| 27 |
-
|
| 28 |
## Dataset Usage
|
| 29 |
### Using `datasets` library
|
| 30 |
```
|
| 31 |
-
|
| 32 |
-
|
| 33 |
```
|
| 34 |
### Using `seacrowd` library
|
| 35 |
```import seacrowd as sc
|
| 36 |
# Load the dataset using the default config
|
| 37 |
-
|
| 38 |
# Check all available subsets (config names) of the dataset
|
| 39 |
-
|
| 40 |
# Load the dataset using a specific config
|
| 41 |
-
|
| 42 |
```
|
| 43 |
-
|
| 44 |
-
|
| 45 |
-
|
| 46 |
|
| 47 |
## Dataset Homepage
|
| 48 |
|
|
|
|
| 13 |
- image-captioning
|
| 14 |
---
|
| 15 |
|
| 16 |
+
COCO-35L is a machine-generated image caption dataset, constructed by translating COCO Captions (Chen et al., 2015) to the other 34 languages using Google’s machine translation API.
|
| 17 |
+
152520 image ids are not found in the coco 2014 training caption. Validation set is ok Using COCO 2014 train and validation set.
|
| 18 |
+
|
| 19 |
|
| 20 |
## Languages
|
| 21 |
|
|
|
|
| 24 |
## Supported Tasks
|
| 25 |
|
| 26 |
Image Captioning
|
| 27 |
+
|
| 28 |
## Dataset Usage
|
| 29 |
### Using `datasets` library
|
| 30 |
```
|
| 31 |
+
from datasets import load_dataset
|
| 32 |
+
dset = datasets.load_dataset("SEACrowd/coco_35l", trust_remote_code=True)
|
| 33 |
```
|
| 34 |
### Using `seacrowd` library
|
| 35 |
```import seacrowd as sc
|
| 36 |
# Load the dataset using the default config
|
| 37 |
+
dset = sc.load_dataset("coco_35l", schema="seacrowd")
|
| 38 |
# Check all available subsets (config names) of the dataset
|
| 39 |
+
print(sc.available_config_names("coco_35l"))
|
| 40 |
# Load the dataset using a specific config
|
| 41 |
+
dset = sc.load_dataset_by_config_name(config_name="<config_name>")
|
| 42 |
```
|
| 43 |
+
|
| 44 |
+
More details on how to load the `seacrowd` library can be found [here](https://github.com/SEACrowd/seacrowd-datahub?tab=readme-ov-file#how-to-use).
|
| 45 |
+
|
| 46 |
|
| 47 |
## Dataset Homepage
|
| 48 |
|