Upload coco_35l.py with huggingface_hub
Browse files- coco_35l.py +230 -0
coco_35l.py
ADDED
|
@@ -0,0 +1,230 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import json
|
| 2 |
+
import os
|
| 3 |
+
from typing import Dict, List, Tuple
|
| 4 |
+
|
| 5 |
+
# import csv
|
| 6 |
+
import datasets
|
| 7 |
+
import jsonlines as jl
|
| 8 |
+
import pandas as pd
|
| 9 |
+
|
| 10 |
+
from seacrowd.utils import schemas
|
| 11 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
| 12 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
| 13 |
+
|
| 14 |
+
_CITATION = """\
|
| 15 |
+
@inproceedings{thapliyal-etal-2022-crossmodal,
|
| 16 |
+
title = "Crossmodal-3600: A Massively Multilingual Multimodal Evaluation Dataset",
|
| 17 |
+
author = "Thapliyal, Ashish V. and
|
| 18 |
+
Pont Tuset, Jordi and
|
| 19 |
+
Chen, Xi and
|
| 20 |
+
Soricut, Radu",
|
| 21 |
+
editor = "Goldberg, Yoav and
|
| 22 |
+
Kozareva, Zornitsa and
|
| 23 |
+
Zhang, Yue",
|
| 24 |
+
booktitle = "Proceedings of the 2022 Conference on Empirical Methods in Natural Language Processing",
|
| 25 |
+
month = dec,
|
| 26 |
+
year = "2022",
|
| 27 |
+
address = "Abu Dhabi, United Arab Emirates",
|
| 28 |
+
publisher = "Association for Computational Linguistics",
|
| 29 |
+
url = "https://aclanthology.org/2022.emnlp-main.45",
|
| 30 |
+
doi = "10.18653/v1/2022.emnlp-main.45",
|
| 31 |
+
pages = "715--729",
|
| 32 |
+
}
|
| 33 |
+
"""
|
| 34 |
+
|
| 35 |
+
_DATASETNAME = "coco_35l"
|
| 36 |
+
|
| 37 |
+
_DESCRIPTION = """\
|
| 38 |
+
COCO-35L is a machine-generated image caption dataset, constructed by translating COCO Captions (Chen et al., 2015) to the other 34 languages using Google’s machine translation API.
|
| 39 |
+
152520 image ids are not found in the coco 2014 training caption. Validation set is ok Using COCO 2014 train and validation set.
|
| 40 |
+
"""
|
| 41 |
+
|
| 42 |
+
_HOMEPAGE = "https://google.github.io/crossmodal-3600/"
|
| 43 |
+
|
| 44 |
+
_LICENSE = Licenses.CC_BY_4_0.value
|
| 45 |
+
|
| 46 |
+
_URLS = {
|
| 47 |
+
"coco2017_train_images": "http://images.cocodataset.org/zips/train2017.zip",
|
| 48 |
+
"coco2014_train_images": "http://images.cocodataset.org/zips/train2014.zip",
|
| 49 |
+
"coco2014_val_images": "http://images.cocodataset.org/zips/val2014.zip",
|
| 50 |
+
"coco2014_train_val_annots": "http://images.cocodataset.org/annotations/annotations_trainval2014.zip",
|
| 51 |
+
"coco2017_train_val_annots": "http://images.cocodataset.org/annotations/annotations_trainval2017.zip",
|
| 52 |
+
"trans_train": "https://storage.googleapis.com/crossmodal-3600/coco_mt_train.jsonl.gz",
|
| 53 |
+
"trans_dev": "https://storage.googleapis.com/crossmodal-3600/coco_mt_dev.jsonl.gz",
|
| 54 |
+
}
|
| 55 |
+
|
| 56 |
+
_SUPPORTED_TASKS = [Tasks.IMAGE_CAPTIONING]
|
| 57 |
+
|
| 58 |
+
_SOURCE_VERSION = "1.0.0"
|
| 59 |
+
|
| 60 |
+
_SEACROWD_VERSION = "2024.06.20"
|
| 61 |
+
|
| 62 |
+
_LANGUAGES = {"fil": "fil", "ind": "id", "tha": "th", "vie": "vi"}
|
| 63 |
+
|
| 64 |
+
_LOCAL = False
|
| 65 |
+
|
| 66 |
+
class Coco35LDataset(datasets.GeneratorBasedBuilder):
|
| 67 |
+
"""
|
| 68 |
+
COCO-35L is a machine-generated image caption dataset, constructed by translating COCO Captions (Chen et al., 2015) to the other 34 languages using Google’s machine translation API.
|
| 69 |
+
"""
|
| 70 |
+
|
| 71 |
+
SOURCE_VERSION = datasets.Version(_SOURCE_VERSION)
|
| 72 |
+
SEACROWD_VERSION = datasets.Version(_SEACROWD_VERSION)
|
| 73 |
+
|
| 74 |
+
BUILDER_CONFIGS = [
|
| 75 |
+
SEACrowdConfig(
|
| 76 |
+
name=f"{_DATASETNAME}_{lang}_source",
|
| 77 |
+
version=datasets.Version(_SOURCE_VERSION),
|
| 78 |
+
description=f"{_DATASETNAME}_{lang} source schema",
|
| 79 |
+
schema="source",
|
| 80 |
+
subset_id=f"{_DATASETNAME}_{lang}",
|
| 81 |
+
) for lang in _LANGUAGES
|
| 82 |
+
] + [
|
| 83 |
+
SEACrowdConfig(
|
| 84 |
+
name=f"{_DATASETNAME}_{lang}_seacrowd_imtext",
|
| 85 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
| 86 |
+
description=f"{_DATASETNAME}_{lang} SEACrowd schema",
|
| 87 |
+
schema="seacrowd_imtext",
|
| 88 |
+
subset_id=f"{_DATASETNAME}_{lang}",
|
| 89 |
+
) for lang in _LANGUAGES
|
| 90 |
+
]
|
| 91 |
+
|
| 92 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_{sorted(_LANGUAGES)[0]}_source"
|
| 93 |
+
|
| 94 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 95 |
+
if self.config.schema == "source":
|
| 96 |
+
features = datasets.Features(
|
| 97 |
+
{
|
| 98 |
+
"id": datasets.Value("string"),
|
| 99 |
+
"image_paths": datasets.Value("string"),
|
| 100 |
+
"src_lang": datasets.Value("string"),
|
| 101 |
+
"caption_tokenized": datasets.Value("string"),
|
| 102 |
+
"trg_lang": datasets.Value("string"),
|
| 103 |
+
"translation_tokenized": datasets.Value("string"),
|
| 104 |
+
"backtranslation_tokenized": datasets.Value("string"),
|
| 105 |
+
}
|
| 106 |
+
)
|
| 107 |
+
elif self.config.schema == "seacrowd_imtext":
|
| 108 |
+
features = schemas.image_text_features()
|
| 109 |
+
|
| 110 |
+
return datasets.DatasetInfo(
|
| 111 |
+
description=_DESCRIPTION,
|
| 112 |
+
features=features,
|
| 113 |
+
homepage=_HOMEPAGE,
|
| 114 |
+
license=_LICENSE,
|
| 115 |
+
citation=_CITATION,
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 119 |
+
"""Returns SplitGenerators."""
|
| 120 |
+
trans_train_path = dl_manager.download_and_extract(_URLS["trans_train"])
|
| 121 |
+
trans_val_path = dl_manager.download_and_extract(_URLS["trans_dev"])
|
| 122 |
+
|
| 123 |
+
coco2014_train_val_annots_path = dl_manager.download_and_extract(_URLS["coco2014_train_val_annots"])
|
| 124 |
+
coco2014_val_images_path = dl_manager.download_and_extract(_URLS["coco2014_val_images"])
|
| 125 |
+
coco2014_train_images_path = dl_manager.download_and_extract(_URLS["coco2014_train_images"])
|
| 126 |
+
|
| 127 |
+
trans_train_captions = {}
|
| 128 |
+
trans_dev_captions = {}
|
| 129 |
+
train_df = pd.DataFrame()
|
| 130 |
+
val_df = pd.DataFrame()
|
| 131 |
+
|
| 132 |
+
current_lang = _LANGUAGES[self.config.subset_id.split("_")[2]]
|
| 133 |
+
|
| 134 |
+
# the COCO dataset structure has separated the captions and images information. The caption's "image_id" key will refer to the image's "id" key.
|
| 135 |
+
# load the image informations from COCO 2014 dataset and put it into a dataframe
|
| 136 |
+
with open(os.path.join(coco2014_train_val_annots_path, "annotations", "captions_val2014.json")) as json_captions:
|
| 137 |
+
captions = json.load(json_captions)
|
| 138 |
+
val_df = pd.DataFrame(captions["images"])
|
| 139 |
+
|
| 140 |
+
with open(os.path.join(coco2014_train_val_annots_path, "annotations", "captions_train2014.json")) as json_captions:
|
| 141 |
+
captions = json.load(json_captions)
|
| 142 |
+
train_df = pd.DataFrame(captions["images"])
|
| 143 |
+
|
| 144 |
+
# the translated caption has "image_id" which refers to the "image_id" in the COCO annotations.
|
| 145 |
+
# however we can skip this and connect it to the images' "id"
|
| 146 |
+
# the example of an "image_id" in the translated caption -> "123456_0" since an image can has many descriptions.
|
| 147 |
+
# thus, the real image_id to map it into the COCO image dataset is the "123456"
|
| 148 |
+
with jl.open(trans_train_path, mode="r") as j:
|
| 149 |
+
total = 0
|
| 150 |
+
not_found = 0
|
| 151 |
+
missing_ids = []
|
| 152 |
+
for line in j:
|
| 153 |
+
if line["trg_lang"] == current_lang:
|
| 154 |
+
total += 1
|
| 155 |
+
|
| 156 |
+
trans_img_id = line["image_id"]
|
| 157 |
+
coco2014_img_id = line["image_id"].split("_")[0]
|
| 158 |
+
|
| 159 |
+
# unfortunately, not all image_id in the translated caption can be found in the original COCO 2014.
|
| 160 |
+
# hence, we need to handle such errors
|
| 161 |
+
try:
|
| 162 |
+
filename = train_df.query(f"id=={int(coco2014_img_id)}")["file_name"].values[0]
|
| 163 |
+
trans_train_captions[trans_img_id] = line
|
| 164 |
+
trans_train_captions[trans_img_id]["filename"] = os.path.join(coco2014_train_images_path, "train2014", filename)
|
| 165 |
+
except IndexError:
|
| 166 |
+
missing_ids.append(trans_img_id)
|
| 167 |
+
not_found += 1
|
| 168 |
+
pass
|
| 169 |
+
|
| 170 |
+
# the validation set are strangely okay. with no missing image_id(s)
|
| 171 |
+
with jl.open(trans_val_path, mode="r") as j:
|
| 172 |
+
for line in j:
|
| 173 |
+
if line["trg_lang"] == current_lang:
|
| 174 |
+
trans_img_id = line["image_id"]
|
| 175 |
+
trans_dev_captions[trans_img_id] = line
|
| 176 |
+
coco2014_img_id = int(trans_img_id.split("_")[0])
|
| 177 |
+
filename = val_df.query(f"id=={coco2014_img_id}")["file_name"].values[0]
|
| 178 |
+
trans_dev_captions[trans_img_id]["filename"] = os.path.join(coco2014_val_images_path, "val2014", filename)
|
| 179 |
+
|
| 180 |
+
return [
|
| 181 |
+
datasets.SplitGenerator(
|
| 182 |
+
name=datasets.Split.TRAIN,
|
| 183 |
+
gen_kwargs={
|
| 184 |
+
"filepath": {
|
| 185 |
+
"images": trans_train_captions,
|
| 186 |
+
},
|
| 187 |
+
"split": "train",
|
| 188 |
+
},
|
| 189 |
+
),
|
| 190 |
+
datasets.SplitGenerator(
|
| 191 |
+
name=datasets.Split.VALIDATION,
|
| 192 |
+
gen_kwargs={
|
| 193 |
+
"filepath": {
|
| 194 |
+
"images": trans_dev_captions,
|
| 195 |
+
},
|
| 196 |
+
"split": "dev",
|
| 197 |
+
},
|
| 198 |
+
),
|
| 199 |
+
]
|
| 200 |
+
|
| 201 |
+
def _generate_examples(self, filepath: dict, split: str) -> Tuple[int, Dict]:
|
| 202 |
+
"""Yields examples as (key, example) tuples."""
|
| 203 |
+
counter = 0
|
| 204 |
+
for trans_img_id, data in filepath["images"].items():
|
| 205 |
+
if self.config.schema == "source":
|
| 206 |
+
yield counter, {
|
| 207 |
+
"id": trans_img_id + "_" + str(counter),
|
| 208 |
+
"image_paths": data["filename"],
|
| 209 |
+
"src_lang": data["src_lang"],
|
| 210 |
+
"caption_tokenized": data["caption_tokenized"],
|
| 211 |
+
"trg_lang": data["trg_lang"],
|
| 212 |
+
"translation_tokenized": data["translation_tokenized"],
|
| 213 |
+
"backtranslation_tokenized": data["backtranslation_tokenized"],
|
| 214 |
+
}
|
| 215 |
+
|
| 216 |
+
elif self.config.schema == "seacrowd_imtext":
|
| 217 |
+
yield counter, {
|
| 218 |
+
"id": trans_img_id + "_" + str(counter),
|
| 219 |
+
"image_paths": [data["filename"]],
|
| 220 |
+
"texts": data["translation_tokenized"],
|
| 221 |
+
"metadata": {
|
| 222 |
+
"context": None,
|
| 223 |
+
"labels": None,
|
| 224 |
+
},
|
| 225 |
+
}
|
| 226 |
+
|
| 227 |
+
else:
|
| 228 |
+
raise ValueError(f"Invalid config: {self.config.name}")
|
| 229 |
+
|
| 230 |
+
counter += 1
|