Upload vispamreviews.py with huggingface_hub
Browse files- vispamreviews.py +179 -0
vispamreviews.py
ADDED
|
@@ -0,0 +1,179 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# coding=utf-8
|
| 2 |
+
# Copyright 2022 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
+
#
|
| 4 |
+
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
+
# you may not use this file except in compliance with the License.
|
| 6 |
+
# You may obtain a copy of the License at
|
| 7 |
+
#
|
| 8 |
+
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
+
#
|
| 10 |
+
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
+
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
+
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
+
# See the License for the specific language governing permissions and
|
| 14 |
+
# limitations under the License.
|
| 15 |
+
import os
|
| 16 |
+
from typing import Dict, List, Tuple
|
| 17 |
+
|
| 18 |
+
import datasets
|
| 19 |
+
import pandas
|
| 20 |
+
|
| 21 |
+
from seacrowd.utils import schemas
|
| 22 |
+
from seacrowd.utils.configs import SEACrowdConfig
|
| 23 |
+
from seacrowd.utils.constants import Licenses, Tasks
|
| 24 |
+
|
| 25 |
+
_CITATION = """
|
| 26 |
+
@InProceedings{10.1007/978-3-031-21743-2_48,
|
| 27 |
+
author="Van Dinh, Co
|
| 28 |
+
and Luu, Son T.
|
| 29 |
+
and Nguyen, Anh Gia-Tuan",
|
| 30 |
+
editor="Nguyen, Ngoc Thanh
|
| 31 |
+
and Tran, Tien Khoa
|
| 32 |
+
and Tukayev, Ualsher
|
| 33 |
+
and Hong, Tzung-Pei
|
| 34 |
+
and Trawi{\'{n}}ski, Bogdan
|
| 35 |
+
and Szczerbicki, Edward",
|
| 36 |
+
title="Detecting Spam Reviews on Vietnamese E-Commerce Websites",
|
| 37 |
+
booktitle="Intelligent Information and Database Systems",
|
| 38 |
+
year="2022",
|
| 39 |
+
publisher="Springer International Publishing",
|
| 40 |
+
address="Cham",
|
| 41 |
+
pages="595--607",
|
| 42 |
+
abstract="The reviews of customers play an essential role in online shopping.
|
| 43 |
+
People often refer to reviews or comments of previous customers to decide whether
|
| 44 |
+
to buy a new product. Catching up with this behavior, some people create untruths and
|
| 45 |
+
illegitimate reviews to hoax customers about the fake quality of products. These are called
|
| 46 |
+
spam reviews, confusing consumers on online shopping platforms and negatively affecting online
|
| 47 |
+
shopping behaviors. We propose the dataset called ViSpamReviews, which has a strict annotation
|
| 48 |
+
procedure for detecting spam reviews on e-commerce platforms. Our dataset consists of two tasks:
|
| 49 |
+
the binary classification task for detecting whether a review is spam or not and the multi-class
|
| 50 |
+
classification task for identifying the type of spam. The PhoBERT obtained the highest results on
|
| 51 |
+
both tasks, 86.89%, and 72.17%, respectively, by macro average F1 score.",
|
| 52 |
+
isbn="978-3-031-21743-2"
|
| 53 |
+
}
|
| 54 |
+
"""
|
| 55 |
+
|
| 56 |
+
_LOCAL = False
|
| 57 |
+
_LANGUAGES = ["vie"]
|
| 58 |
+
_DATASETNAME = "vispamreviews"
|
| 59 |
+
_DESCRIPTION = """
|
| 60 |
+
The dataset was collected from leading online shopping platforms in Vietnam. Some of the most recent
|
| 61 |
+
selling products for each product category were selected and up to 15 reviews per product were collected.
|
| 62 |
+
Each review was then labeled as either NO-SPAM, SPAM-1 (fake review), SPAM-2 (review on brand only), or
|
| 63 |
+
SPAM-3 (irrelevant content).
|
| 64 |
+
"""
|
| 65 |
+
|
| 66 |
+
_HOMEPAGE = "https://github.com/sonlam1102/vispamdetection/"
|
| 67 |
+
_LICENSE = Licenses.CC_BY_NC_4_0.value
|
| 68 |
+
_URL = "https://raw.githubusercontent.com/sonlam1102/vispamdetection/main/dataset/vispamdetection_dataset.zip"
|
| 69 |
+
|
| 70 |
+
_Split_Path = {
|
| 71 |
+
"train": "dataset/train.csv",
|
| 72 |
+
"validation": "dataset/dev.csv",
|
| 73 |
+
"test": "dataset/test.csv",
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
_SUPPORTED_TASKS = [Tasks.SENTIMENT_ANALYSIS] # Text Classification
|
| 77 |
+
_SOURCE_VERSION = "1.0.0"
|
| 78 |
+
_SEACROWD_VERSION = "2024.06.20"
|
| 79 |
+
|
| 80 |
+
|
| 81 |
+
class ViSpamReviewsDataset(datasets.GeneratorBasedBuilder):
|
| 82 |
+
"""
|
| 83 |
+
The SeaCrowd dataloader for the review dataset shopping platforms in Vietnam (ViSpamReviews).
|
| 84 |
+
"""
|
| 85 |
+
|
| 86 |
+
CLASS_LABELS = [0, 1]
|
| 87 |
+
SPAM_TYPE_LABELS = [0, 1, 2, 3]
|
| 88 |
+
|
| 89 |
+
BUILDER_CONFIGS = [
|
| 90 |
+
SEACrowdConfig(
|
| 91 |
+
name=f"{_DATASETNAME}_source",
|
| 92 |
+
version=datasets.Version(_SOURCE_VERSION),
|
| 93 |
+
description=f"{_DATASETNAME} source schema",
|
| 94 |
+
schema="source",
|
| 95 |
+
subset_id=f"{_DATASETNAME}",
|
| 96 |
+
),
|
| 97 |
+
SEACrowdConfig(
|
| 98 |
+
name=f"{_DATASETNAME}_spam_source",
|
| 99 |
+
version=datasets.Version(_SOURCE_VERSION),
|
| 100 |
+
description=f"{_DATASETNAME} source schema",
|
| 101 |
+
schema="source",
|
| 102 |
+
subset_id=f"{_DATASETNAME}",
|
| 103 |
+
),
|
| 104 |
+
SEACrowdConfig(
|
| 105 |
+
name=f"{_DATASETNAME}_seacrowd_text",
|
| 106 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
| 107 |
+
description=f"{_DATASETNAME} SEACrowd schema ",
|
| 108 |
+
schema="seacrowd_text",
|
| 109 |
+
subset_id=f"{_DATASETNAME}",
|
| 110 |
+
),
|
| 111 |
+
SEACrowdConfig(
|
| 112 |
+
name=f"{_DATASETNAME}_spam_seacrowd_text",
|
| 113 |
+
version=datasets.Version(_SEACROWD_VERSION),
|
| 114 |
+
description=f"{_DATASETNAME} SEACrowd schema ",
|
| 115 |
+
schema="seacrowd_text",
|
| 116 |
+
subset_id=f"{_DATASETNAME}_spam",
|
| 117 |
+
),
|
| 118 |
+
]
|
| 119 |
+
|
| 120 |
+
DEFAULT_CONFIG_NAME = f"{_DATASETNAME}_source"
|
| 121 |
+
|
| 122 |
+
def _info(self) -> datasets.DatasetInfo:
|
| 123 |
+
if self.config.name.endswith("source"):
|
| 124 |
+
features = (datasets.Features
|
| 125 |
+
(
|
| 126 |
+
{"id": datasets.Value("int32"),
|
| 127 |
+
"text": datasets.Value("string"),
|
| 128 |
+
"label": datasets.Value("string"),
|
| 129 |
+
"spam_label": datasets.Value("string"),
|
| 130 |
+
"rating": datasets.Value("int32")
|
| 131 |
+
}
|
| 132 |
+
))
|
| 133 |
+
|
| 134 |
+
elif self.config.name == "vispamreviews_seacrowd_text":
|
| 135 |
+
features = schemas.text_features(label_names=self.CLASS_LABELS)
|
| 136 |
+
elif self.config.name == "vispamreviews_spam_seacrowd_text":
|
| 137 |
+
features = schemas.text_features(label_names=self.SPAM_TYPE_LABELS)
|
| 138 |
+
else:
|
| 139 |
+
raise ValueError(f"Invalid schema {self.config.name}")
|
| 140 |
+
|
| 141 |
+
return datasets.DatasetInfo(
|
| 142 |
+
description=_DESCRIPTION,
|
| 143 |
+
features=features,
|
| 144 |
+
homepage=_HOMEPAGE,
|
| 145 |
+
license=_LICENSE,
|
| 146 |
+
citation=_CITATION,
|
| 147 |
+
)
|
| 148 |
+
|
| 149 |
+
def _split_generators(self, dl_manager: datasets.DownloadManager) -> List[datasets.SplitGenerator]:
|
| 150 |
+
file_paths = dl_manager.download_and_extract(_URL)
|
| 151 |
+
return [
|
| 152 |
+
datasets.SplitGenerator(
|
| 153 |
+
name=datasets.Split.TRAIN,
|
| 154 |
+
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["train"])},
|
| 155 |
+
),
|
| 156 |
+
datasets.SplitGenerator(
|
| 157 |
+
name=datasets.Split.VALIDATION,
|
| 158 |
+
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["validation"])},
|
| 159 |
+
),
|
| 160 |
+
datasets.SplitGenerator(
|
| 161 |
+
name=datasets.Split.TEST,
|
| 162 |
+
gen_kwargs={"filepath": os.path.join(file_paths, _Split_Path["test"])},
|
| 163 |
+
),
|
| 164 |
+
]
|
| 165 |
+
|
| 166 |
+
def _generate_examples(self, filepath) -> Tuple[int, Dict]:
|
| 167 |
+
"""Yields examples as (key, example) tuples."""
|
| 168 |
+
data_lines = pandas.read_csv(filepath)
|
| 169 |
+
for rid, row in enumerate(data_lines.itertuples()):
|
| 170 |
+
if self.config.name.endswith("source"):
|
| 171 |
+
example = {"id": str(rid), "text": row.Comment, "label": row.Label, "spam_label": row.SpamLabel,
|
| 172 |
+
"rating": row.Rating}
|
| 173 |
+
elif self.config.name == "vispamreviews_seacrowd_text":
|
| 174 |
+
example = {"id": str(rid), "text": row.Comment, "label": row.Label}
|
| 175 |
+
elif self.config.name == "vispamreviews_spam_seacrowd_text":
|
| 176 |
+
example = {"id": str(rid), "text": row.Comment, "label": row.SpamLabel}
|
| 177 |
+
else:
|
| 178 |
+
raise ValueError(f"Invalid schema {self.config.schema}")
|
| 179 |
+
yield rid, example
|