feat: add link generation script
Browse files- link_gen.py +105 -0
link_gen.py
ADDED
|
@@ -0,0 +1,105 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import dgl
|
| 2 |
+
import torch
|
| 3 |
+
import pickle
|
| 4 |
+
from copy import deepcopy
|
| 5 |
+
import scipy.sparse as sp
|
| 6 |
+
import numpy as np
|
| 7 |
+
|
| 8 |
+
|
| 9 |
+
def mask_test_edges(adj_orig, val_frac, test_frac):
|
| 10 |
+
|
| 11 |
+
# Remove diagonal elements
|
| 12 |
+
adj = deepcopy(adj_orig)
|
| 13 |
+
# set diag as all zero
|
| 14 |
+
adj.setdiag(0)
|
| 15 |
+
adj.eliminate_zeros()
|
| 16 |
+
# Check that diag is zero:
|
| 17 |
+
# assert np.diag(adj.todense()).sum() == 0
|
| 18 |
+
|
| 19 |
+
adj_triu = sp.triu(adj, 1)
|
| 20 |
+
edges = sparse_to_tuple(adj_triu)[0]
|
| 21 |
+
num_test = int(np.floor(edges.shape[0] * test_frac))
|
| 22 |
+
num_val = int(np.floor(edges.shape[0] * val_frac))
|
| 23 |
+
|
| 24 |
+
all_edge_idx = list(range(edges.shape[0]))
|
| 25 |
+
np.random.shuffle(all_edge_idx)
|
| 26 |
+
val_edge_idx = all_edge_idx[:num_val]
|
| 27 |
+
test_edge_idx = all_edge_idx[num_val : (num_val + num_test)]
|
| 28 |
+
test_edges = edges[test_edge_idx]
|
| 29 |
+
val_edges = edges[val_edge_idx]
|
| 30 |
+
train_edges = edges[all_edge_idx[num_val + num_test :]]
|
| 31 |
+
|
| 32 |
+
noedge_mask = np.ones(adj.shape) - adj
|
| 33 |
+
noedges = np.asarray(sp.triu(noedge_mask, 1).nonzero()).T
|
| 34 |
+
all_edge_idx = list(range(noedges.shape[0]))
|
| 35 |
+
np.random.shuffle(all_edge_idx)
|
| 36 |
+
val_edge_idx = all_edge_idx[:num_val]
|
| 37 |
+
test_edge_idx = all_edge_idx[num_val : (num_val + num_test)]
|
| 38 |
+
test_edges_false = noedges[test_edge_idx]
|
| 39 |
+
val_edges_false = noedges[val_edge_idx]
|
| 40 |
+
|
| 41 |
+
data = np.ones(train_edges.shape[0])
|
| 42 |
+
adj_train = sp.csr_matrix(
|
| 43 |
+
(data, (train_edges[:, 0], train_edges[:, 1])), shape=adj.shape
|
| 44 |
+
)
|
| 45 |
+
adj_train = adj_train + adj_train.T
|
| 46 |
+
|
| 47 |
+
train_mask = np.ones(adj_train.shape)
|
| 48 |
+
for edges_tmp in [val_edges, val_edges_false, test_edges, test_edges_false]:
|
| 49 |
+
for e in edges_tmp:
|
| 50 |
+
assert e[0] < e[1]
|
| 51 |
+
train_mask[edges_tmp.T[0], edges_tmp.T[1]] = 0
|
| 52 |
+
train_mask[edges_tmp.T[1], edges_tmp.T[0]] = 0
|
| 53 |
+
|
| 54 |
+
train_edges = np.asarray(sp.triu(adj_train, 1).nonzero()).T
|
| 55 |
+
train_edges_false = np.asarray(
|
| 56 |
+
(sp.triu(train_mask, 1) - sp.triu(adj_train, 1)).nonzero()
|
| 57 |
+
).T
|
| 58 |
+
|
| 59 |
+
# NOTE: all these edge lists only contain single direction of edge!
|
| 60 |
+
return (
|
| 61 |
+
train_edges,
|
| 62 |
+
train_edges_false,
|
| 63 |
+
val_edges,
|
| 64 |
+
val_edges_false,
|
| 65 |
+
test_edges,
|
| 66 |
+
test_edges_false,
|
| 67 |
+
)
|
| 68 |
+
|
| 69 |
+
|
| 70 |
+
def sparse_to_tuple(sparse_mx):
|
| 71 |
+
if not sp.isspmatrix_coo(sparse_mx):
|
| 72 |
+
sparse_mx = sparse_mx.tocoo()
|
| 73 |
+
coords = np.vstack((sparse_mx.row, sparse_mx.col)).transpose()
|
| 74 |
+
values = sparse_mx.data
|
| 75 |
+
shape = sparse_mx.shape
|
| 76 |
+
return coords, values, shape
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
if __name__ == "__main__":
|
| 80 |
+
g, _ = dgl.load_graphs("./processed/squirrel.bin")
|
| 81 |
+
g = g[0]
|
| 82 |
+
total_pos_edges = torch.randperm(g.num_edges())
|
| 83 |
+
adj_train = g.adjacency_matrix(scipy_fmt="csr")
|
| 84 |
+
(
|
| 85 |
+
train_edges,
|
| 86 |
+
train_edges_false,
|
| 87 |
+
val_edges,
|
| 88 |
+
val_edges_false,
|
| 89 |
+
test_edges,
|
| 90 |
+
test_edges_false,
|
| 91 |
+
) = mask_test_edges(adj_train, 0.1, 0.2)
|
| 92 |
+
tvt_edges_file = "./links/squirrel_tvtEdges.pkl"
|
| 93 |
+
pickle.dump(
|
| 94 |
+
(
|
| 95 |
+
train_edges,
|
| 96 |
+
train_edges_false,
|
| 97 |
+
val_edges,
|
| 98 |
+
val_edges_false,
|
| 99 |
+
test_edges,
|
| 100 |
+
test_edges_false,
|
| 101 |
+
),
|
| 102 |
+
open(tvt_edges_file, "wb"),
|
| 103 |
+
)
|
| 104 |
+
node_assignment = dgl.metis_partition_assignment(g, 10)
|
| 105 |
+
torch.save(node_assignment, "./pretrain_labels/metis_label_squirrel.pt")
|