SayedShaun commited on
Commit
bd60d11
·
verified ·
1 Parent(s): 167035f

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +46 -0
README.md CHANGED
@@ -21,3 +21,49 @@ configs:
21
  - split: train
22
  path: data/train-*
23
  ---
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
21
  - split: train
22
  path: data/train-*
23
  ---
24
+
25
+
26
+ # Bangla Sentiment Dataset (SentiGOLD v1)
27
+
28
+ **SentiGOLD 70k v1** is a high-quality Bangla (Bengali) text dataset developed for multiclass sentiment classification. It contains over 70,000 labeled text samples annotated by native speakers. The dataset was curated and released by **Gigatech Limited** in collaboration with the **Bangladesh Computer Council (BCC)**.
29
+
30
+ Each text entry in the dataset is categorized into one of the following sentiment classes:
31
+
32
+ - **SP**: Strongly Positive
33
+ - **WP**: Weakly Positive
34
+ - **WN**: Weakly Positive Negative
35
+ - **SN**: Strongly Negative
36
+ - **NU**: Neutral
37
+
38
+ This dataset provides a valuable resource for building and evaluating sentiment analysis models in the Bangla language.
39
+
40
+
41
+ ## Use the Dataset
42
+
43
+ ```python
44
+ from datasets import load_dataset
45
+
46
+ dataset = load_dataset('SayedShaun/bangla-sentigold')
47
+ print(dataset)
48
+
49
+ >>> DatasetDict({
50
+ >>> train: Dataset({
51
+ >>> features: ['ID', 'Text', 'Polarity', 'Domain'],
52
+ >>> num_rows: 70000
53
+ >>> })
54
+ >>> })
55
+ ```
56
+
57
+
58
+ ## Source and Citation
59
+
60
+ **[SentiGOLD: A Large Bangla Gold Standard Multi-Domain Sentiment Analysis Dataset and Its Evaluation](https://arxiv.org/abs/2306.06147)**
61
+
62
+ ```bibtex
63
+ @inproceedings{islam2023sentigold,
64
+ title={Sentigold: A large bangla gold standard multi-domain sentiment analysis dataset and its evaluation},
65
+ author={Islam, Md Ekramul and Chowdhury, Labib and Khan, Faisal Ahamed and Hossain, Shazzad and Hossain, Md Sourave and Rashid, Mohammad Mamun Or and Mohammed, Nabeel and Amin, Mohammad Ruhul},
66
+ booktitle={Proceedings of the 29th ACM SIGKDD Conference on Knowledge Discovery and Data Mining},
67
+ pages={4207--4218},
68
+ year={2023}
69
+ }