--- dataset_info: features: - name: image dtype: image - name: age dtype: class_label: names: '0': 0-2 '1': 3-9 '2': 10-19 '3': 20-29 '4': 30-39 '5': 40-49 '6': 50-59 '7': 60-69 '8': more than 70 - name: gender dtype: class_label: names: '0': Male '1': Female - name: race dtype: class_label: names: '0': East Asian '1': Indian '2': Black '3': White '4': Middle Eastern '5': Latino_Hispanic '6': Southeast Asian - name: service_test dtype: bool splits: - name: train num_bytes: 65869100.551 num_examples: 3031 download_size: 65046038 dataset_size: 65869100.551 configs: - config_name: default data_files: - split: train path: data/train-* license: apache-2.0 language: - en pretty_name: Fairness size_categories: - 1KFairFace_Balanced_3K ## Overview `FairFace_Balanced_3K` is a balanced subset of the original [HuggingFaceM4/FairFace](https://huggingface.co/datasets/HuggingFaceM4/FairFace) dataset created to support bias-sensitive experiments in facial attribute recognition. This subset includes **3,031 samples**, with **433 images per race class**, across **7 race categories**: - White - Black - East Asian - Southeast Asian - Indian - Middle Eastern - Latino_Hispanic Each entry contains: - RGB facial image - Age group label (9 categories) - Gender label (Male, Female) - Race label (7 classes) The subset is balanced to mitigate data bias and allow fair evaluation across racial groups. Some random samples of the dataset are as: Sample ## Data Format The dataset is stored in the Hugging Face Hub using the `datasets` library and Parquet format. Each row includes: - `image`: PIL image in byte format - `age`: Integer (mapped to age group) - `gender`: Integer (0: Male, 1: Female) - `race`: Integer (0–6, mapped to race category) ## Visuals - Race Distribution Sample - Age vs Group Distriution Sample - Gender Distribution Sample ## Citation If you use this dataset or the original FairFace dataset, please cite the following work: ```bibtex @inproceedings{karkkainenfairface, title={FairFace: Face Attribute Dataset for Balanced Race, Gender, and Age for Bias Measurement and Mitigation}, author={Karkkainen, Kimmo and Joo, Jungseock}, booktitle={Proceedings of the IEEE/CVF Winter Conference on Applications of Computer Vision}, year={2021}, pages={1548--1558} } ``` ## Original Sources Original Repo: [joojs/fairface](https://github.com/joojs/fairface) Original Dataset: [HuggingFaceM4/FairFace](https://huggingface.co/datasets/HuggingFaceM4/FairFace) Original Paper: [FairFace](https://openaccess.thecvf.com/content/WACV2021/papers/Karkkainen_FairFace_Face_Attribute_Dataset_for_Balanced_Race_Gender_and_Age_WACV_2021_paper.pdf)