Datasets:

Modalities:
Text
Formats:
parquet
Libraries:
Datasets
pandas
License:
KirtanGangani commited on
Commit
a1a6663
·
verified ·
1 Parent(s): a467e64

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +34 -1
README.md CHANGED
@@ -42,4 +42,37 @@ The dataset is split using a **class-wise stratified approach** to ensure balanc
42
  | Val | 23,952 | 15,738 |21,042 | `val/` |
43
  | Test | 18,492 | 10,278 |12,819 | `test/` |
44
 
45
- Each split contains separate folders for annotations and images: `train/`, `val/`, `test/`
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
42
  | Val | 23,952 | 15,738 |21,042 | `val/` |
43
  | Test | 18,492 | 10,278 |12,819 | `test/` |
44
 
45
+ Each split contains separate folders for annotations and images: `train/`, `val/`, `test/`
46
+
47
+ ## Extracting Images from Parquet Files
48
+
49
+ The dataset stores all images in Parquet format as raw bytes. To convert these bytes back into .png images, you can use the following Python code:
50
+
51
+ ```python
52
+ import pandas as pd
53
+ from PIL import Image
54
+ import io
55
+ import os
56
+
57
+ # Load Parquet
58
+ train_df = pd.read_parquet("train/train.parquet")
59
+
60
+ # Directory to save images
61
+ output_dir = "train/images"
62
+ os.makedirs(output_dir, exist_ok=True)
63
+
64
+ # Loop over all rows
65
+ for idx, row in train_df.iterrows():
66
+ imagename = row['image_name']
67
+ image_bytes = row['image']
68
+
69
+ # Convert bytes to PIL Image
70
+ img = Image.open(io.BytesIO(image_bytes))
71
+
72
+ # Save image as PNG
73
+ save_path = os.path.join(output_dir, f"{imagename}")
74
+ img.save(save_path)
75
+ ```
76
+ ### Note:
77
+ * This will create a folder ```train/images/``` and save all images as ```.png```.
78
+ * You can modify the path if your Parquet file is in a different location or if you want to save images elsewhere.