Datasets:
Tasks:
Text Classification
Modalities:
Text
Formats:
parquet
Sub-tasks:
topic-classification
Languages:
Hausa
Size:
1K - 10K
License:
| # coding=utf-8 | |
| # Copyright 2020 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| # Lint as: python3 | |
| """Hausa VOA News Topic Classification dataset.""" | |
| from __future__ import absolute_import, division, print_function | |
| import csv | |
| import datasets | |
| _DESCRIPTION = """\ | |
| A collection of news article headlines in Hausa from VOA Hausa. | |
| Each headline is labeled with one of the following classes: Nigeria, | |
| Africa, World, Health or Politics. | |
| The dataset was presented in the paper: | |
| Hedderich, Adelani, Zhu, Alabi, Markus, Klakow: Transfer Learning and | |
| Distant Supervision for Multilingual Transformer Models: A Study on | |
| African Languages (EMNLP 2020). | |
| """ | |
| _CITATION = """\ | |
| @inproceedings{hedderich-etal-2020-transfer, | |
| title = "Transfer Learning and Distant Supervision for Multilingual Transformer Models: A Study on African Languages", | |
| author = "Hedderich, Michael A. and | |
| Adelani, David and | |
| Zhu, Dawei and | |
| Alabi, Jesujoba and | |
| Markus, Udia and | |
| Klakow, Dietrich", | |
| booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing (EMNLP)", | |
| year = "2020", | |
| publisher = "Association for Computational Linguistics", | |
| url = "https://www.aclweb.org/anthology/2020.emnlp-main.204", | |
| doi = "10.18653/v1/2020.emnlp-main.204", | |
| } | |
| """ | |
| _TRAIN_DOWNLOAD_URL = "https://raw.githubusercontent.com/uds-lsv/transfer-distant-transformer-african/master/data/hausa_newsclass/train_clean.tsv" | |
| _VALIDATION_DOWNLOAD_URL = "https://raw.githubusercontent.com/uds-lsv/transfer-distant-transformer-african/master/data/hausa_newsclass/dev.tsv" | |
| _TEST_DOWNLOAD_URL = "https://raw.githubusercontent.com/uds-lsv/transfer-distant-transformer-african/master/data/hausa_newsclass/test.tsv" | |
| class HausaVOATopics(datasets.GeneratorBasedBuilder): | |
| """Hausa VOA News Topic Classification dataset.""" | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "news_title": datasets.Value("string"), | |
| "label": datasets.features.ClassLabel(names=["Africa", "Health", "Nigeria", "Politics", "World"]), | |
| } | |
| ), | |
| homepage="https://github.com/uds-lsv/transfer-distant-transformer-african", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| train_path = dl_manager.download_and_extract(_TRAIN_DOWNLOAD_URL) | |
| validation_path = dl_manager.download_and_extract(_VALIDATION_DOWNLOAD_URL) | |
| test_path = dl_manager.download_and_extract(_TEST_DOWNLOAD_URL) | |
| return [ | |
| datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"filepath": train_path}), | |
| datasets.SplitGenerator(name=datasets.Split.VALIDATION, gen_kwargs={"filepath": validation_path}), | |
| datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"filepath": test_path}), | |
| ] | |
| def _generate_examples(self, filepath): | |
| """Generate Hausa VOA News Topic examples.""" | |
| with open(filepath, encoding="utf-8") as csv_file: | |
| csv_reader = csv.DictReader(csv_file, delimiter="\t") | |
| for id_, row in enumerate(csv_reader): | |
| yield id_, {"news_title": row["news_title"], "label": row["label"]} | |