File size: 3,337 Bytes
44f5f55 4290ff9 44f5f55 4290ff9 44f5f55 c823b98 ef6eb41 c823b98 ef6eb41 ec3ebe0 ef6eb41 c823b98 ef6eb41 eee3fe2 ef6eb41 eee3fe2 ef6eb41 f84bcbb ef6eb41 c823b98 07198e0 c823b98 ef6eb41 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 |
---
dataset_info:
features:
- name: ID
dtype: string
- name: Height
dtype: int64
- name: Width
dtype: int64
- name: Entity_Masks
dtype: string
- name: Grouped_OCR_Blocks
dtype: string
- name: Caption
dtype: string
- name: Tags
dtype: string
- name: OCR_Text
dtype: string
- name: URL
dtype: string
- name: URL_sha256
dtype: string
- name: Language
dtype: string
- name: NSFW
dtype: string
splits:
- name: train
num_bytes: 1904454568
num_examples: 120000
download_size: 1144599398
dataset_size: 1904454568
configs:
- config_name: default
data_files:
- split: train
path: data/train-*
---
# ADOPD: A Large-Scale Document Page Decomposition Dataset
[](.top_ADOPD_Tasks.png)
**ADOPD** is a large-scale dataset designed for document image understanding. It introduces a novel data-driven document taxonomy discovery framework that combines large-scale pretrained models with a human-in-the-loop refinement process. The dataset supports four core tasks and includes rich annotations to foster progress in document analysis.
---
## π Dataset Summary
- **Total Images**: 120,000
- **Languages**:
- English: 60,000
- Chinese: 20,000
- Japanese: 20,000
- Others: 20,000
ADOPD ensures **diversity and balance** across document types and languages, validated through extensive experiments.
---
## π§© Supported Tasks
| Task | Description | Field Name |
|------------|--------------------------------------------|----------------------|
| **Doc2Mask** | Segment entity regions as pixel-level masks | `Entity_Masks` |
| **Doc2Box** | Detect and group OCR text blocks | `Grouped_OCR_Blocks` |
| **Doc2Tag** | Predict high-level semantic tags | `Tags` |
| **Doc2Seq** | Generate abstracted captions | `Caption` |
---
## π Annotation Fields
Each data sample includes the following fields:
- `ID` / `URL_sha256`: Unique identifier for each document image
- `URL`: Direct link to download the image
- `Height`, `Width`: Image resolution in pixels
- `Entity_Masks`: Human-annotated segmentation masks for document entities
- `Grouped_OCR_Blocks`: Grouped OCR text blocks with bounding boxes
- `Caption`: Human-written descriptive caption summarizing the content
- `Tags`: Predicted document-level semantic tags
- `OCR_Text`: Raw plain-text extracted from the image
- `Language`: Language of the document content
- `NSFW`: Indicator flag for not-safe-for-work (NSFW) content
---
## π Citation
If you use ADOPD in your research, please cite:
```bibtex
@inproceedings{
gu2024adopd,
title={{ADOPD}: A Large-Scale Document Page Decomposition Dataset},
author={Jiuxiang Gu and Xiangxi Shi and Jason Kuen and Lu Qi and Ruiyi Zhang and Anqi Liu and Ani Nenkova and Tong Sun},
booktitle={The Twelfth International Conference on Learning Representations},
year={2024},
url={https://openreview.net/forum?id=x1ptaXpOYa}
}
```
---
## π License
- **License**: [CC BY-NC-ND 4.0](https://creativecommons.org/licenses/by-nc-nd/4.0/)
- For **non-commercial use only**. Redistribution and derivative works are **not permitted**.
|