Datasets:
Tasks:
Question Answering
Sub-tasks:
multiple-choice-qa
Languages:
English
Size:
10K<n<100K
License:
Delete loading script
Browse files- math_qa.py +0 -84
math_qa.py
DELETED
|
@@ -1,84 +0,0 @@
|
|
| 1 |
-
"""TODO(math_qa): Add a description here."""
|
| 2 |
-
|
| 3 |
-
|
| 4 |
-
import json
|
| 5 |
-
import os
|
| 6 |
-
|
| 7 |
-
import datasets
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# TODO(math_qa): BibTeX citation
|
| 11 |
-
_CITATION = """
|
| 12 |
-
"""
|
| 13 |
-
|
| 14 |
-
# TODO(math_qa):
|
| 15 |
-
_DESCRIPTION = """
|
| 16 |
-
Our dataset is gathered by using a new representation language to annotate over the AQuA-RAT dataset. AQuA-RAT has provided the questions, options, rationale, and the correct options.
|
| 17 |
-
"""
|
| 18 |
-
_URL = "https://math-qa.github.io/math-QA/data/MathQA.zip"
|
| 19 |
-
|
| 20 |
-
|
| 21 |
-
class MathQa(datasets.GeneratorBasedBuilder):
|
| 22 |
-
"""TODO(math_qa): Short description of my dataset."""
|
| 23 |
-
|
| 24 |
-
# TODO(math_qa): Set up version.
|
| 25 |
-
VERSION = datasets.Version("0.1.0")
|
| 26 |
-
|
| 27 |
-
def _info(self):
|
| 28 |
-
# TODO(math_qa): Specifies the datasets.DatasetInfo object
|
| 29 |
-
return datasets.DatasetInfo(
|
| 30 |
-
# This is the description that will appear on the datasets page.
|
| 31 |
-
description=_DESCRIPTION,
|
| 32 |
-
# datasets.features.FeatureConnectors
|
| 33 |
-
features=datasets.Features(
|
| 34 |
-
{
|
| 35 |
-
# These are the features of your dataset like images, labels ...
|
| 36 |
-
"Problem": datasets.Value("string"),
|
| 37 |
-
"Rationale": datasets.Value("string"),
|
| 38 |
-
"options": datasets.Value("string"),
|
| 39 |
-
"correct": datasets.Value("string"),
|
| 40 |
-
"annotated_formula": datasets.Value("string"),
|
| 41 |
-
"linear_formula": datasets.Value("string"),
|
| 42 |
-
"category": datasets.Value("string"),
|
| 43 |
-
}
|
| 44 |
-
),
|
| 45 |
-
# If there's a common (input, target) tuple from the features,
|
| 46 |
-
# specify them here. They'll be used if as_supervised=True in
|
| 47 |
-
# builder.as_dataset.
|
| 48 |
-
supervised_keys=None,
|
| 49 |
-
# Homepage of the dataset for documentation
|
| 50 |
-
homepage="https://math-qa.github.io/math-QA/",
|
| 51 |
-
citation=_CITATION,
|
| 52 |
-
)
|
| 53 |
-
|
| 54 |
-
def _split_generators(self, dl_manager):
|
| 55 |
-
"""Returns SplitGenerators."""
|
| 56 |
-
# TODO(math_qa): Downloads the data and defines the splits
|
| 57 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to
|
| 58 |
-
# download and extract URLs
|
| 59 |
-
dl_path = dl_manager.download_and_extract(_URL)
|
| 60 |
-
return [
|
| 61 |
-
datasets.SplitGenerator(
|
| 62 |
-
name=datasets.Split.TRAIN,
|
| 63 |
-
# These kwargs will be passed to _generate_examples
|
| 64 |
-
gen_kwargs={"filepath": os.path.join(dl_path, "train.json")},
|
| 65 |
-
),
|
| 66 |
-
datasets.SplitGenerator(
|
| 67 |
-
name=datasets.Split.TEST,
|
| 68 |
-
# These kwargs will be passed to _generate_examples
|
| 69 |
-
gen_kwargs={"filepath": os.path.join(dl_path, "test.json")},
|
| 70 |
-
),
|
| 71 |
-
datasets.SplitGenerator(
|
| 72 |
-
name=datasets.Split.VALIDATION,
|
| 73 |
-
# These kwargs will be passed to _generate_examples
|
| 74 |
-
gen_kwargs={"filepath": os.path.join(dl_path, "dev.json")},
|
| 75 |
-
),
|
| 76 |
-
]
|
| 77 |
-
|
| 78 |
-
def _generate_examples(self, filepath):
|
| 79 |
-
"""Yields examples."""
|
| 80 |
-
# TODO(math_qa): Yields (key, example) tuples from the dataset
|
| 81 |
-
with open(filepath, encoding="utf-8") as f:
|
| 82 |
-
data = json.load(f)
|
| 83 |
-
for id_, row in enumerate(data):
|
| 84 |
-
yield id_, row
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|