Datasets:
Tasks:
Question Answering
Modalities:
Text
Formats:
parquet
Sub-tasks:
closed-domain-qa
Languages:
English
Size:
10K - 100K
ArXiv:
License:
| """TODO(sciQ): Add a description here.""" | |
| from __future__ import absolute_import, division, print_function | |
| import json | |
| import os | |
| import datasets | |
| # TODO(sciQ): BibTeX citation | |
| _CITATION = """\ | |
| @inproceedings{SciQ, | |
| title={Crowdsourcing Multiple Choice Science Questions}, | |
| author={Johannes Welbl, Nelson F. Liu, Matt Gardner}, | |
| year={2017}, | |
| journal={arXiv:1707.06209v1} | |
| } | |
| """ | |
| # TODO(sciQ): | |
| _DESCRIPTION = """\ | |
| The SciQ dataset contains 13,679 crowdsourced science exam questions about Physics, Chemistry and Biology, among others. The questions are in multiple-choice format with 4 answer options each. For the majority of the questions, an additional paragraph with supporting evidence for the correct answer is provided. | |
| """ | |
| _URL = "https://s3-us-west-2.amazonaws.com/ai2-website/data/SciQ.zip" | |
| class Sciq(datasets.GeneratorBasedBuilder): | |
| """TODO(sciQ): Short description of my dataset.""" | |
| # TODO(sciQ): Set up version. | |
| VERSION = datasets.Version("0.1.0") | |
| def _info(self): | |
| # TODO(sciQ): Specifies the datasets.DatasetInfo object | |
| return datasets.DatasetInfo( | |
| # This is the description that will appear on the datasets page. | |
| description=_DESCRIPTION, | |
| # datasets.features.FeatureConnectors | |
| features=datasets.Features( | |
| { | |
| # These are the features of your dataset like images, labels ... | |
| "question": datasets.Value("string"), | |
| "distractor3": datasets.Value("string"), | |
| "distractor1": datasets.Value("string"), | |
| "distractor2": datasets.Value("string"), | |
| "correct_answer": datasets.Value("string"), | |
| "support": datasets.Value("string"), | |
| } | |
| ), | |
| # If there's a common (input, target) tuple from the features, | |
| # specify them here. They'll be used if as_supervised=True in | |
| # builder.as_dataset. | |
| supervised_keys=None, | |
| # Homepage of the dataset for documentation | |
| homepage="https://allenai.org/data/sciq", | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| # TODO(sciQ): Downloads the data and defines the splits | |
| # dl_manager is a datasets.download.DownloadManager that can be used to | |
| # download and extract URLs | |
| dl_dir = dl_manager.download_and_extract(_URL) | |
| data_dir = os.path.join(dl_dir, "SciQ dataset-2 3") | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={"filepath": os.path.join(data_dir, "train.json")}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.VALIDATION, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={"filepath": os.path.join(data_dir, "valid.json")}, | |
| ), | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TEST, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={"filepath": os.path.join(data_dir, "test.json")}, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath): | |
| """Yields examples.""" | |
| # TODO(sciQ): Yields (key, example) tuples from the dataset | |
| with open(filepath, encoding="utf-8") as f: | |
| data = json.load(f) | |
| for id_, row in enumerate(data): | |
| yield id_, row | |