File size: 2,006 Bytes
a5aad35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
0d01471
a5aad35
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
---
dataset_name: YT-DemTalk
license: other
language:
- en
task_categories:
- classification
- information-retrieval
tags:
- dementia
- mental-health
- youtube
- talking-head
- video
size_categories:
- n<1K
annotations_creators:
- self reported diagnosis
source_datasets: [Youtube]
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train.csv
---

# YouTube Dementia Speaking (URLs + Labels)

**Last updated:** 2025-10-30

A large dataset of YouTube links where a single person speaks to camera, with labels that **correspond to the self reported dementia/alzheimer disgnosis** in the table (e.g., `dementia` vs. `neurotypical`).  
The repository intentionally stores **only links and annotations**, not the videos themselves.

## Files

- `data/train.csv` — canonical CSV (recommended)


## Columns
- **label**: (describe this column)
- **url**: (describe this column)
- **split**: (describe this column)

> Please edit the descriptions above to reflect your exact schema. If you have a column for the class label, note the allowed values (e.g., `dementia`, `control`).

## Intended Uses
- Research on passive dementia screening and talking-head analysis
- Link corpus for downstream scraping **by end users** respecting platform terms

## Licensing & Content Ownership
- This dataset repository contains **only URLs and annotations**.
- Video/audio content is owned by the original creators and hosted on YouTube (or other platforms); users must comply with those platforms’ Terms of Service.
- Choose an appropriate license for your annotations (the YAML header currently uses `other` as a placeholder; consider `cc-by-4.0` for labels-only data if appropriate).

## Ethical Considerations
- Health-related labels may be sensitive. Consider IRB/ethics approvals and consent where applicable.
- Avoid redistributing raw personal data; keep only minimal metadata necessary for research.
- Be mindful of dataset misuse and downstream harms; document limitations and context.