Delete loading script
Browse files- superb_demo.py +0 -431
superb_demo.py
DELETED
|
@@ -1,431 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
# Lint as: python3
|
| 17 |
-
"""SUPERB: Speech processing Universal PERformance Benchmark."""
|
| 18 |
-
|
| 19 |
-
import csv
|
| 20 |
-
import glob
|
| 21 |
-
import os
|
| 22 |
-
import textwrap
|
| 23 |
-
|
| 24 |
-
import datasets
|
| 25 |
-
|
| 26 |
-
_CITATION = """\
|
| 27 |
-
@article{DBLP:journals/corr/abs-2105-01051,
|
| 28 |
-
author = {Shu{-}Wen Yang and
|
| 29 |
-
Po{-}Han Chi and
|
| 30 |
-
Yung{-}Sung Chuang and
|
| 31 |
-
Cheng{-}I Jeff Lai and
|
| 32 |
-
Kushal Lakhotia and
|
| 33 |
-
Yist Y. Lin and
|
| 34 |
-
Andy T. Liu and
|
| 35 |
-
Jiatong Shi and
|
| 36 |
-
Xuankai Chang and
|
| 37 |
-
Guan{-}Ting Lin and
|
| 38 |
-
Tzu{-}Hsien Huang and
|
| 39 |
-
Wei{-}Cheng Tseng and
|
| 40 |
-
Ko{-}tik Lee and
|
| 41 |
-
Da{-}Rong Liu and
|
| 42 |
-
Zili Huang and
|
| 43 |
-
Shuyan Dong and
|
| 44 |
-
Shang{-}Wen Li and
|
| 45 |
-
Shinji Watanabe and
|
| 46 |
-
Abdelrahman Mohamed and
|
| 47 |
-
Hung{-}yi Lee},
|
| 48 |
-
title = {{SUPERB:} Speech processing Universal PERformance Benchmark},
|
| 49 |
-
journal = {CoRR},
|
| 50 |
-
volume = {abs/2105.01051},
|
| 51 |
-
year = {2021},
|
| 52 |
-
url = {https://arxiv.org/abs/2105.01051},
|
| 53 |
-
archivePrefix = {arXiv},
|
| 54 |
-
eprint = {2105.01051},
|
| 55 |
-
timestamp = {Thu, 01 Jul 2021 13:30:22 +0200},
|
| 56 |
-
biburl = {https://dblp.org/rec/journals/corr/abs-2105-01051.bib},
|
| 57 |
-
bibsource = {dblp computer science bibliography, https://dblp.org}
|
| 58 |
-
}
|
| 59 |
-
"""
|
| 60 |
-
|
| 61 |
-
_DESCRIPTION = """\
|
| 62 |
-
Self-supervised learning (SSL) has proven vital for advancing research in
|
| 63 |
-
natural language processing (NLP) and computer vision (CV). The paradigm
|
| 64 |
-
pretrains a shared model on large volumes of unlabeled data and achieves
|
| 65 |
-
state-of-the-art (SOTA) for various tasks with minimal adaptation. However, the
|
| 66 |
-
speech processing community lacks a similar setup to systematically explore the
|
| 67 |
-
paradigm. To bridge this gap, we introduce Speech processing Universal
|
| 68 |
-
PERformance Benchmark (SUPERB). SUPERB is a leaderboard to benchmark the
|
| 69 |
-
performance of a shared model across a wide range of speech processing tasks
|
| 70 |
-
with minimal architecture changes and labeled data. Among multiple usages of the
|
| 71 |
-
shared model, we especially focus on extracting the representation learned from
|
| 72 |
-
SSL due to its preferable re-usability. We present a simple framework to solve
|
| 73 |
-
SUPERB tasks by learning task-specialized lightweight prediction heads on top of
|
| 74 |
-
the frozen shared model. Our results demonstrate that the framework is promising
|
| 75 |
-
as SSL representations show competitive generalizability and accessibility
|
| 76 |
-
across SUPERB tasks. We release SUPERB as a challenge with a leaderboard and a
|
| 77 |
-
benchmark toolkit to fuel the research in representation learning and general
|
| 78 |
-
speech processing.
|
| 79 |
-
|
| 80 |
-
Note that in order to limit the required storage for preparing this dataset, the
|
| 81 |
-
audio is stored in the .flac format and is not converted to a float32 array. To
|
| 82 |
-
convert, the audio file to a float32 array, please make use of the `.map()`
|
| 83 |
-
function as follows:
|
| 84 |
-
|
| 85 |
-
|
| 86 |
-
```python
|
| 87 |
-
import soundfile as sf
|
| 88 |
-
|
| 89 |
-
def map_to_array(batch):
|
| 90 |
-
speech_array, _ = sf.read(batch["file"])
|
| 91 |
-
batch["speech"] = speech_array
|
| 92 |
-
return batch
|
| 93 |
-
|
| 94 |
-
dataset = dataset.map(map_to_array, remove_columns=["file"])
|
| 95 |
-
```
|
| 96 |
-
"""
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
class SuperbConfig(datasets.BuilderConfig):
|
| 100 |
-
"""BuilderConfig for Superb."""
|
| 101 |
-
|
| 102 |
-
def __init__(
|
| 103 |
-
self,
|
| 104 |
-
features,
|
| 105 |
-
url,
|
| 106 |
-
data_url=None,
|
| 107 |
-
supervised_keys=None,
|
| 108 |
-
**kwargs,
|
| 109 |
-
):
|
| 110 |
-
super().__init__(version=datasets.Version("1.9.0", ""), **kwargs)
|
| 111 |
-
self.features = features
|
| 112 |
-
self.data_url = data_url
|
| 113 |
-
self.url = url
|
| 114 |
-
self.supervised_keys = supervised_keys
|
| 115 |
-
|
| 116 |
-
|
| 117 |
-
class Superb(datasets.GeneratorBasedBuilder):
|
| 118 |
-
"""Superb dataset."""
|
| 119 |
-
|
| 120 |
-
BUILDER_CONFIGS = [
|
| 121 |
-
SuperbConfig(
|
| 122 |
-
name="asr",
|
| 123 |
-
description=textwrap.dedent(
|
| 124 |
-
"""\
|
| 125 |
-
ASR transcribes utterances into words. While PR analyzes the
|
| 126 |
-
improvement in modeling phonetics, ASR reflects the significance of
|
| 127 |
-
the improvement in a real-world scenario. LibriSpeech
|
| 128 |
-
train-clean-100/dev-clean/test-clean subsets are used for
|
| 129 |
-
training/validation/testing. The evaluation metric is word error
|
| 130 |
-
rate (WER)."""
|
| 131 |
-
),
|
| 132 |
-
features=datasets.Features(
|
| 133 |
-
{
|
| 134 |
-
"file": datasets.Value("string"),
|
| 135 |
-
"audio": datasets.features.Audio(sampling_rate=16_000),
|
| 136 |
-
"text": datasets.Value("string"),
|
| 137 |
-
"speaker_id": datasets.Value("int64"),
|
| 138 |
-
"chapter_id": datasets.Value("int64"),
|
| 139 |
-
"id": datasets.Value("string"),
|
| 140 |
-
}
|
| 141 |
-
),
|
| 142 |
-
supervised_keys=("file", "text"),
|
| 143 |
-
url="http://www.openslr.org/12",
|
| 144 |
-
data_url="data/LibriSpeech-test-clean.zip",
|
| 145 |
-
),
|
| 146 |
-
SuperbConfig(
|
| 147 |
-
name="ks",
|
| 148 |
-
description=textwrap.dedent(
|
| 149 |
-
"""\
|
| 150 |
-
Keyword Spotting (KS) detects preregistered keywords by classifying utterances into a predefined set of
|
| 151 |
-
words. The task is usually performed on-device for the fast response time. Thus, accuracy, model size, and
|
| 152 |
-
inference time are all crucial. SUPERB uses the widely used Speech Commands dataset v1.0 for the task.
|
| 153 |
-
The dataset consists of ten classes of keywords, a class for silence, and an unknown class to include the
|
| 154 |
-
false positive. The evaluation metric is accuracy (ACC)"""
|
| 155 |
-
),
|
| 156 |
-
features=datasets.Features(
|
| 157 |
-
{
|
| 158 |
-
"file": datasets.Value("string"),
|
| 159 |
-
"audio": datasets.features.Audio(sampling_rate=16_000),
|
| 160 |
-
"label": datasets.ClassLabel(
|
| 161 |
-
names=[
|
| 162 |
-
"yes",
|
| 163 |
-
"no",
|
| 164 |
-
"up",
|
| 165 |
-
"down",
|
| 166 |
-
"left",
|
| 167 |
-
"right",
|
| 168 |
-
"on",
|
| 169 |
-
"off",
|
| 170 |
-
"stop",
|
| 171 |
-
"go",
|
| 172 |
-
"_silence_",
|
| 173 |
-
"_unknown_",
|
| 174 |
-
]
|
| 175 |
-
),
|
| 176 |
-
}
|
| 177 |
-
),
|
| 178 |
-
supervised_keys=("file", "label"),
|
| 179 |
-
url="https://www.tensorflow.org/datasets/catalog/speech_commands",
|
| 180 |
-
data_url="data/speech_commands_test_set_v0.01.zip",
|
| 181 |
-
),
|
| 182 |
-
SuperbConfig(
|
| 183 |
-
name="ic",
|
| 184 |
-
description=textwrap.dedent(
|
| 185 |
-
"""\
|
| 186 |
-
Intent Classification (IC) classifies utterances into predefined classes to determine the intent of
|
| 187 |
-
speakers. SUPERB uses the Fluent Speech Commands dataset, where each utterance is tagged with three intent
|
| 188 |
-
labels: action, object, and location. The evaluation metric is accuracy (ACC)."""
|
| 189 |
-
),
|
| 190 |
-
features=datasets.Features(
|
| 191 |
-
{
|
| 192 |
-
"file": datasets.Value("string"),
|
| 193 |
-
"audio": datasets.features.Audio(sampling_rate=16_000),
|
| 194 |
-
"speaker_id": datasets.Value("string"),
|
| 195 |
-
"text": datasets.Value("string"),
|
| 196 |
-
"action": datasets.ClassLabel(
|
| 197 |
-
names=["activate", "bring", "change language", "deactivate", "decrease", "increase"]
|
| 198 |
-
),
|
| 199 |
-
"object": datasets.ClassLabel(
|
| 200 |
-
names=[
|
| 201 |
-
"Chinese",
|
| 202 |
-
"English",
|
| 203 |
-
"German",
|
| 204 |
-
"Korean",
|
| 205 |
-
"heat",
|
| 206 |
-
"juice",
|
| 207 |
-
"lamp",
|
| 208 |
-
"lights",
|
| 209 |
-
"music",
|
| 210 |
-
"newspaper",
|
| 211 |
-
"none",
|
| 212 |
-
"shoes",
|
| 213 |
-
"socks",
|
| 214 |
-
"volume",
|
| 215 |
-
]
|
| 216 |
-
),
|
| 217 |
-
"location": datasets.ClassLabel(names=["bedroom", "kitchen", "none", "washroom"]),
|
| 218 |
-
}
|
| 219 |
-
),
|
| 220 |
-
# no default supervised keys, since there are 3 labels
|
| 221 |
-
supervised_keys=None,
|
| 222 |
-
url="https://fluent.ai/fluent-speech-commands-a-dataset-for-spoken-language-understanding-research/",
|
| 223 |
-
data_url="data/fluent_speech_commands_dataset.zip",
|
| 224 |
-
),
|
| 225 |
-
SuperbConfig(
|
| 226 |
-
name="si",
|
| 227 |
-
description=textwrap.dedent(
|
| 228 |
-
"""\
|
| 229 |
-
Speaker Identification (SI) classifies each utterance for its speaker identity as a multi-class
|
| 230 |
-
classification, where speakers are in the same predefined set for both training and testing. The widely
|
| 231 |
-
used VoxCeleb1 dataset is adopted, and the evaluation metric is accuracy (ACC)."""
|
| 232 |
-
),
|
| 233 |
-
features=datasets.Features(
|
| 234 |
-
{
|
| 235 |
-
"file": datasets.Value("string"),
|
| 236 |
-
"audio": datasets.features.Audio(sampling_rate=16_000),
|
| 237 |
-
"label": datasets.ClassLabel(names=[f"id{i + 10001}" for i in range(1251)]),
|
| 238 |
-
}
|
| 239 |
-
),
|
| 240 |
-
supervised_keys=("file", "label"),
|
| 241 |
-
url="https://www.robots.ox.ac.uk/~vgg/data/voxceleb/vox1.html",
|
| 242 |
-
data_url="data/VoxCeleb1.zip"
|
| 243 |
-
),
|
| 244 |
-
SuperbConfig(
|
| 245 |
-
name="er",
|
| 246 |
-
description=textwrap.dedent(
|
| 247 |
-
"""\
|
| 248 |
-
Emotion Recognition (ER) predicts an emotion class for each utterance. The most widely used ER dataset
|
| 249 |
-
IEMOCAP is adopted, and we follow the conventional evaluation protocol: we drop the unbalance emotion
|
| 250 |
-
classes to leave the final four classes with a similar amount of data points and cross-validates on five
|
| 251 |
-
folds of the standard splits. The evaluation metric is accuracy (ACC)."""
|
| 252 |
-
),
|
| 253 |
-
features=datasets.Features(
|
| 254 |
-
{
|
| 255 |
-
"file": datasets.Value("string"),
|
| 256 |
-
"audio": datasets.features.Audio(sampling_rate=16_000),
|
| 257 |
-
"label": datasets.ClassLabel(names=['neu', 'hap', 'ang', 'sad']),
|
| 258 |
-
}
|
| 259 |
-
),
|
| 260 |
-
supervised_keys=("file", "label"),
|
| 261 |
-
url="https://sail.usc.edu/iemocap/",
|
| 262 |
-
data_url="data/IEMOCAP_full_release.zip"
|
| 263 |
-
),
|
| 264 |
-
]
|
| 265 |
-
|
| 266 |
-
def _info(self):
|
| 267 |
-
return datasets.DatasetInfo(
|
| 268 |
-
description=_DESCRIPTION,
|
| 269 |
-
features=self.config.features,
|
| 270 |
-
supervised_keys=self.config.supervised_keys,
|
| 271 |
-
homepage=self.config.url,
|
| 272 |
-
citation=_CITATION,
|
| 273 |
-
)
|
| 274 |
-
|
| 275 |
-
def _split_generators(self, dl_manager):
|
| 276 |
-
if self.config.name == "asr":
|
| 277 |
-
archive_path = dl_manager.download_and_extract(self.config.data_url)
|
| 278 |
-
return [
|
| 279 |
-
datasets.SplitGenerator(name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path}),
|
| 280 |
-
]
|
| 281 |
-
elif self.config.name == "ks":
|
| 282 |
-
archive_path = dl_manager.download_and_extract(self.config.data_url)
|
| 283 |
-
return [
|
| 284 |
-
datasets.SplitGenerator(
|
| 285 |
-
name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": "test"}
|
| 286 |
-
),
|
| 287 |
-
]
|
| 288 |
-
elif self.config.name == "ic":
|
| 289 |
-
archive_path = dl_manager.download_and_extract(self.config.data_url)
|
| 290 |
-
return [
|
| 291 |
-
datasets.SplitGenerator(
|
| 292 |
-
name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": "test"}
|
| 293 |
-
),
|
| 294 |
-
]
|
| 295 |
-
elif self.config.name == "si":
|
| 296 |
-
archive_path = dl_manager.download_and_extract(self.config.data_url)
|
| 297 |
-
return [
|
| 298 |
-
datasets.SplitGenerator(
|
| 299 |
-
name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": 3}
|
| 300 |
-
),
|
| 301 |
-
]
|
| 302 |
-
elif self.config.name == "sd":
|
| 303 |
-
archive_path = dl_manager.download_and_extract(self.config.data_url)
|
| 304 |
-
return [
|
| 305 |
-
datasets.SplitGenerator(
|
| 306 |
-
name=datasets.Split.TEST, gen_kwargs={"archive_path": archive_path, "split": "test"}
|
| 307 |
-
)
|
| 308 |
-
]
|
| 309 |
-
elif self.config.name == "er":
|
| 310 |
-
archive_path = dl_manager.download_and_extract(self.config.data_url)
|
| 311 |
-
return [
|
| 312 |
-
datasets.SplitGenerator(
|
| 313 |
-
name="session1", gen_kwargs={"archive_path": archive_path, "split": 1},
|
| 314 |
-
)
|
| 315 |
-
]
|
| 316 |
-
|
| 317 |
-
def _generate_examples(self, archive_path, split=None):
|
| 318 |
-
"""Generate examples."""
|
| 319 |
-
if self.config.name == "asr":
|
| 320 |
-
transcripts_glob = os.path.join(archive_path, "LibriSpeech", "*/*/*/*.txt")
|
| 321 |
-
key = 0
|
| 322 |
-
for transcript_path in sorted(glob.glob(transcripts_glob)):
|
| 323 |
-
transcript_dir_path = os.path.dirname(transcript_path)
|
| 324 |
-
with open(transcript_path, "r", encoding="utf-8") as f:
|
| 325 |
-
for line in f:
|
| 326 |
-
line = line.strip()
|
| 327 |
-
id_, transcript = line.split(" ", 1)
|
| 328 |
-
audio_file = f"{id_}.flac"
|
| 329 |
-
speaker_id, chapter_id = [int(el) for el in id_.split("-")[:2]]
|
| 330 |
-
audio_path = os.path.join(transcript_dir_path, audio_file)
|
| 331 |
-
yield key, {
|
| 332 |
-
"id": id_,
|
| 333 |
-
"speaker_id": speaker_id,
|
| 334 |
-
"chapter_id": chapter_id,
|
| 335 |
-
"file": audio_path,
|
| 336 |
-
"audio": audio_path,
|
| 337 |
-
"text": transcript,
|
| 338 |
-
}
|
| 339 |
-
key += 1
|
| 340 |
-
elif self.config.name == "ks":
|
| 341 |
-
words = ["yes", "no", "up", "down", "left", "right", "on", "off", "stop", "go"]
|
| 342 |
-
splits = _split_ks_files(archive_path, split)
|
| 343 |
-
for key, audio_file in enumerate(sorted(splits[split])):
|
| 344 |
-
base_dir, file_name = os.path.split(audio_file)
|
| 345 |
-
_, word = os.path.split(base_dir)
|
| 346 |
-
if word in words:
|
| 347 |
-
label = word
|
| 348 |
-
elif word == "_silence_" or word == "_background_noise_":
|
| 349 |
-
label = "_silence_"
|
| 350 |
-
else:
|
| 351 |
-
label = "_unknown_"
|
| 352 |
-
yield key, {"file": audio_file, "audio": audio_file, "label": label}
|
| 353 |
-
elif self.config.name == "ic":
|
| 354 |
-
root_path = os.path.join(archive_path, "fluent_speech_commands_dataset/")
|
| 355 |
-
csv_path = os.path.join(root_path, f"data/{split}_data.csv")
|
| 356 |
-
with open(csv_path, encoding="utf-8") as csv_file:
|
| 357 |
-
csv_reader = csv.reader(csv_file, delimiter=",", skipinitialspace=True)
|
| 358 |
-
next(csv_reader)
|
| 359 |
-
for row in csv_reader:
|
| 360 |
-
key, file_path, speaker_id, text, action, object_, location = row
|
| 361 |
-
audio_path = os.path.join(root_path, file_path)
|
| 362 |
-
yield key, {
|
| 363 |
-
"file": audio_path,
|
| 364 |
-
"audio": audio_path,
|
| 365 |
-
"speaker_id": speaker_id,
|
| 366 |
-
"text": text,
|
| 367 |
-
"action": action,
|
| 368 |
-
"object": object_,
|
| 369 |
-
"location": location,
|
| 370 |
-
}
|
| 371 |
-
elif self.config.name == "si":
|
| 372 |
-
wav_path = os.path.join(archive_path, "wav/")
|
| 373 |
-
splits_path = os.path.join(archive_path, "veri_test_class.txt")
|
| 374 |
-
with open(splits_path, "r", encoding="utf-8") as f:
|
| 375 |
-
for key, line in enumerate(f):
|
| 376 |
-
split_id, file_path = line.strip().split(" ")
|
| 377 |
-
if int(split_id) != split:
|
| 378 |
-
continue
|
| 379 |
-
speaker_id = file_path.split("/")[0]
|
| 380 |
-
audio_path = os.path.join(wav_path, file_path)
|
| 381 |
-
yield key, {
|
| 382 |
-
"file": audio_path,
|
| 383 |
-
"audio": audio_path,
|
| 384 |
-
"label": speaker_id,
|
| 385 |
-
}
|
| 386 |
-
elif self.config.name == "er":
|
| 387 |
-
root_path = os.path.join(archive_path, f"Session{split}/")
|
| 388 |
-
wav_path = os.path.join(root_path, "sentences/wav/")
|
| 389 |
-
labels_path = os.path.join(root_path, "dialog/EmoEvaluation/*.txt")
|
| 390 |
-
emotions = ['neu', 'hap', 'ang', 'sad', 'exc']
|
| 391 |
-
key = 0
|
| 392 |
-
for labels_file in sorted(glob.glob(labels_path)):
|
| 393 |
-
with open(labels_file, "r", encoding="utf-8") as f:
|
| 394 |
-
for line in f:
|
| 395 |
-
if line[0] != "[":
|
| 396 |
-
continue
|
| 397 |
-
_, filename, emo, _ = line.split("\t")
|
| 398 |
-
if emo not in emotions:
|
| 399 |
-
continue
|
| 400 |
-
wav_subdir = filename.rsplit("_", 1)[0]
|
| 401 |
-
filename = f"{filename}.wav"
|
| 402 |
-
audio_path = os.path.join(wav_path, wav_subdir, filename)
|
| 403 |
-
yield key, {
|
| 404 |
-
"file": audio_path,
|
| 405 |
-
"audio": audio_path,
|
| 406 |
-
"label": emo.replace("exc", "hap"),
|
| 407 |
-
}
|
| 408 |
-
key += 1
|
| 409 |
-
|
| 410 |
-
|
| 411 |
-
def _split_ks_files(archive_path, split):
|
| 412 |
-
audio_path = os.path.join(archive_path, "**/*.wav")
|
| 413 |
-
audio_paths = glob.glob(audio_path)
|
| 414 |
-
if split == "test":
|
| 415 |
-
# use all available files for the test archive
|
| 416 |
-
return {"test": audio_paths}
|
| 417 |
-
|
| 418 |
-
val_list_file = os.path.join(archive_path, "validation_list.txt")
|
| 419 |
-
test_list_file = os.path.join(archive_path, "testing_list.txt")
|
| 420 |
-
with open(val_list_file, encoding="utf-8") as f:
|
| 421 |
-
val_paths = f.read().strip().splitlines()
|
| 422 |
-
val_paths = [os.path.join(archive_path, p) for p in val_paths]
|
| 423 |
-
with open(test_list_file, encoding="utf-8") as f:
|
| 424 |
-
test_paths = f.read().strip().splitlines()
|
| 425 |
-
test_paths = [os.path.join(archive_path, p) for p in test_paths]
|
| 426 |
-
|
| 427 |
-
# the paths for the train set is just whichever paths that do not exist in
|
| 428 |
-
# either the test or validation splits
|
| 429 |
-
train_paths = list(set(audio_paths) - set(val_paths) - set(test_paths))
|
| 430 |
-
|
| 431 |
-
return {"train": train_paths, "val": val_paths}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|