|
|
import os; os.environ["CUDA_VISIBLE_DEVICES"]="3" |
|
|
import argparse |
|
|
import time |
|
|
|
|
|
import datasets |
|
|
import torch |
|
|
|
|
|
from transformers import AutoModelForCausalLM, AutoTokenizer |
|
|
from transformers.generation import GenerationConfig |
|
|
|
|
|
|
|
|
MODEL_ID = "Qwen/Qwen3-4B-Instruct-2507" |
|
|
|
|
|
|
|
|
if __name__ == "__main__": |
|
|
|
|
|
parser = argparse.ArgumentParser() |
|
|
parser.add_argument("--num-blocks", "-n", type=int, default=None) |
|
|
parser.add_argument("--max-batch-tokens", "-b", type=int, default=None) |
|
|
parser.add_argument( |
|
|
"--attn", type=str, default="paged_attention|kernels-community/flash-attn", help="Attention implementation" |
|
|
) |
|
|
parser.add_argument("--samples", type=int, default=500) |
|
|
args = parser.parse_args() |
|
|
|
|
|
|
|
|
model = AutoModelForCausalLM.from_pretrained( |
|
|
MODEL_ID, |
|
|
attn_implementation=args.attn, |
|
|
dtype=torch.bfloat16, |
|
|
) |
|
|
model = model.cuda().eval() |
|
|
|
|
|
|
|
|
tokenizer = AutoTokenizer.from_pretrained(MODEL_ID, padding_side="left") |
|
|
dataset = datasets.load_dataset("openai/gsm8k", "socratic", split="test") |
|
|
dataset = dataset.select(range(args.samples)) |
|
|
tokenized_datasets = dataset.map(lambda x: tokenizer(x["question"]), batched=True) |
|
|
simple_batch_inputs = [item["input_ids"] for item in tokenized_datasets] |
|
|
|
|
|
|
|
|
generation_config = GenerationConfig( |
|
|
max_new_tokens=512, |
|
|
use_cuda_graph=False, |
|
|
eos_token_id=tokenizer.eos_token_id, |
|
|
pad_token_id=tokenizer.pad_token_id, |
|
|
do_sample=False, |
|
|
num_blocks=args.num_blocks, |
|
|
max_batch_tokens=args.max_batch_tokens, |
|
|
) |
|
|
|
|
|
|
|
|
_ = model.generate_batch( |
|
|
inputs=simple_batch_inputs[: min(5, args.samples)], |
|
|
generation_config=generation_config, |
|
|
slice_inputs=True, |
|
|
) |
|
|
|
|
|
|
|
|
print("--- Running CB Generation Example ---") |
|
|
start_time = time.time() |
|
|
batch_outputs = model.generate_batch( |
|
|
inputs=simple_batch_inputs, |
|
|
generation_config=generation_config, |
|
|
slice_inputs=True, |
|
|
) |
|
|
end_time = time.time() |
|
|
print("Done with batch generation.") |
|
|
|
|
|
|
|
|
token_count = 0 |
|
|
for i, request in enumerate(batch_outputs): |
|
|
input_text = tokenizer.decode(batch_outputs[request].prompt_ids, skip_special_tokens=True) |
|
|
|
|
|
try: |
|
|
output_text = tokenizer.decode(batch_outputs[request].generated_tokens, skip_special_tokens=True) |
|
|
token_count += len(batch_outputs[request].generated_tokens[1:]) |
|
|
except Exception as e: |
|
|
print(f"Decoding failed for request {request}: {e}") |
|
|
continue |
|
|
|
|
|
|
|
|
gen_time = end_time - start_time |
|
|
tok_per_sec = token_count / gen_time |
|
|
print("-" * 20) |
|
|
print("--- Finished CB Generation Example ---\n") |
|
|
print(f"CB generation took: {gen_time:.2f} seconds for {token_count} tokens. {tok_per_sec:.2f}tok/s") |
|
|
|
|
|
|
|
|
|