File size: 6,021 Bytes
505db55 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 |
import os
from openai import OpenAI
from dotenv import load_dotenv
import plotly.express as px
import plotly.graph_objects as go
import requests
from PIL import Image
from io import BytesIO
import numpy as np
import json
load_dotenv()
client = OpenAI(
base_url = "",
api_key = os.environ["HF_TOKEN"]
)
prompt = """\
Please output the layout information from the PDF image, including each layout element's bbox, its category, and the corresponding text content within the bbox.
1. Bbox format: [x1, y1, x2, y2]
2. Layout Categories: The possible categories are ['Caption', 'Footnote', 'Formula', 'List-item', 'Page-footer', 'Page-header', 'Picture', 'Section-header', 'Table', 'Text', 'Title'].
3. Text Extraction & Formatting Rules:
- Picture: For the 'Picture' category, the text field should be omitted.
- Formula: Format its text as LaTeX.
- Table: Format its text as HTML.
- All Others (Text, Title, etc.): Format their text as Markdown.
4. Constraints:
- The output text must be the original text from the image, with no translation.
- All layout elements must be sorted according to human reading order.
5. Final Output: The entire output must be a single JSON object.\
"""
chat_completion = client.chat.completions.create(
model = "rednote-hilab/dots.ocr",
messages = [
{
"role": "user",
"content": [
{
"type": "image_url",
"image_url": {
"url": "https://github.com/rednote-hilab/dots.ocr/blob/master/demo/demo_image1.jpg?raw=true"
}
},
{
"type": "text",
"text": prompt,
}
]
}
],
stream = True,
)
text = ""
for message in chat_completion:
text = text + message.choices[0].delta.content
annotations = json.loads(text)
# Load image
url = "https://github.com/rednote-hilab/dots.ocr/blob/master/demo/demo_image1.jpg?raw=true"
response = requests.get(url)
img = Image.open(BytesIO(response.content))
img_array = np.array(img)
# Enhanced color mapping for different categories
category_colors = {
'Title': '#FF6B6B',
'Section-header': '#4ECDC4',
'Text': '#45B7D1',
'Picture': '#96CEB4',
'Table': '#FFEAA7',
'Formula': '#DDA0DD',
'Caption': '#98D8C8',
'List-item': '#F7DC6F',
'Footnote': '#BB8FCE',
'Page-header': '#85C1E9',
'Page-footer': '#F8C471'
}
# Create figure with enhanced settings
fig = px.imshow(img_array, aspect='equal')
# Enhanced layout configuration
fig.update_layout(
title={
'text': "Interactive OCR Layout Analysis",
'x': 0.5,
'xanchor': 'center',
'font': {'size': 18, 'family': 'Arial Black'}
},
dragmode="pan", # Enable panning
hovermode="closest",
margin=dict(l=20, r=20, t=60, b=20),
showlegend=True,
legend=dict(
orientation="v",
yanchor="top",
y=1,
xanchor="left",
x=1.02,
bgcolor="rgba(255,255,255,0.8)",
bordercolor="rgba(0,0,0,0.2)",
borderwidth=1
),
plot_bgcolor='white',
paper_bgcolor='white'
)
# Track categories for legend
added_categories = set()
# Add enhanced bounding boxes with category-based colors
for i, ann in enumerate(annotations):
x1, y1, x2, y2 = ann['bbox']
category = ann.get('category', 'Unknown')
color = category_colors.get(category, '#FF4444')
# Enhanced bounding box with category-specific styling
line_width = 3 if category in ['Title', 'Section-header'] else 2
opacity = 0.8 if category == 'Picture' else 1.0
fig.add_shape(
type="rect",
x0=x1, y0=y1, x1=x2, y1=y2,
line=dict(color=color, width=line_width),
opacity=opacity
)
# Enhanced hover information with better formatting
text_content = ann.get('text', 'No text available')
if len(text_content) > 200:
text_content = text_content[:200] + "..."
# Format hover text based on category
if category == 'Formula':
hover_text = f"<b>π’ {category}</b><br><i>{text_content}</i>"
elif category == 'Picture':
hover_text = f"<b>πΌοΈ {category}</b><br>Image element"
elif category == 'Table':
hover_text = f"<b>π {category}</b><br>{text_content}"
elif category == 'Title':
hover_text = f"<b>π {category}</b><br><b>{text_content}</b>"
else:
hover_text = f"<b>π {category}</b><br>{text_content}"
# Add bbox dimensions to hover
width = x2 - x1
height = y2 - y1
hover_text += f"<br><br><i>Box: {width:.0f}Γ{height:.0f}px</i>"
# Create hover point with legend entry
show_legend = category not in added_categories
if show_legend:
added_categories.add(category)
fig.add_trace(go.Scatter(
x=[(x1 + x2) / 2],
y=[(y1 + y2) / 2],
mode="markers",
marker=dict(
size=20,
opacity=0, # Invisible marker
color=color
),
text=[hover_text],
hoverinfo="text",
hovertemplate="%{text}<extra></extra>",
name=category,
showlegend=show_legend,
legendgroup=category
))
# Enhanced axes configuration
fig.update_xaxes(
showticklabels=False,
showgrid=False,
zeroline=False
)
fig.update_yaxes(
showticklabels=False,
showgrid=False,
zeroline=False,
scaleanchor="x",
scaleratio=1
)
# Add custom controls info
fig.add_annotation(
text="π‘ Hover over colored boxes to see content β’ Pan: drag β’ Zoom: scroll",
xref="paper", yref="paper",
x=0.5, y=-0.05,
showarrow=False,
font=dict(size=12, color="gray"),
xanchor="center"
)
# Display statistics
total_elements = len(annotations)
category_counts = {}
for ann in annotations:
cat = ann.get('category', 'Unknown')
category_counts[cat] = category_counts.get(cat, 0) + 1
print(f"π Layout Analysis Complete!")
print(f"Total elements detected: {total_elements}")
print("Category breakdown:")
for cat, count in sorted(category_counts.items()):
print(f" β’ {cat}: {count}")
fig.show() |