File size: 12,537 Bytes
dc343f1
349d844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
13e8e29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
dc343f1
349d844
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
---
license: other
task_categories:
- image-to-text
- image-text-to-text
tags:
- metadata-extraction
- glam
- MARC21
- library-science
size_categories:
- 1K<n<10K
language:
- en
- de
- it
- fr
- es
pretty_name: DOAB Open Access Books Metadata Extraction Dataset
dataset_info:
  features:
  - name: record_id
    dtype: string
  - name: title
    dtype: string
  - name: subtitle
    dtype: string
  - name: statement_of_responsibility
    dtype: 'null'
  - name: authors
    dtype: 'null'
  - name: editors
    dtype: 'null'
  - name: publisher
    dtype: string
  - name: publication_year
    dtype: string
  - name: isbn
    list: string
  - name: subjects
    list: string
  - name: language
    dtype: string
  - name: url_doab_handle
    dtype: string
  - name: url_pdf
    dtype: string
  - name: url_doi
    dtype: 'null'
  - name: url_oapen_viewer
    dtype: 'null'
  - name: url_other
    list: string
  - name: license_type
    dtype: string
  - name: license_url
    dtype: string
  - name: license_version
    dtype: string
  - name: license_text
    dtype: string
  - name: abstract
    dtype: string
  - name: series
    dtype: string
  - name: physical_description
    dtype: string
  - name: raw_marc
    dtype: string
  - name: pdf_path
    dtype: string
  - name: page_texts
    list: string
  - name: page_numbers
    list: int64
  - name: num_pages
    dtype: int64
  - name: page_images
    list: image
  splits:
  - name: train
    num_bytes: 9631218054
    num_examples: 8086
  download_size: 9289649199
  dataset_size: 9631218054
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---

# DOAB Open Access Books - Metadata Extraction Dataset

## Dataset Description

This dataset contains **9,363 open access books** with page images and rich bibliographic metadata extracted from MARC21 records, curated specifically for training and evaluating Vision Language Models (VLMs) on automatic metadata extraction from scholarly monographs.

The dataset is derived from the [Penn State ScholarSphere DOAB collection](https://scholarsphere.psu.edu/resources/f917840a-5ee8-4f08-b3b0-e985e2638380) (Directory of Open Access Books), focusing on books with Creative Commons licenses that permit research and machine learning applications.

> **Note**: This version contains extracted images from the first few pages of each book to reduce dataset size and facilitate ML applications. Open an issue if a raw version with full PDFs would be of use.

### Key Features

- **9,363 open access books** with page images and metadata
- **Page images** extracted from the first few pages of each book
- **Rich metadata** including title, subtitle, authors, editors, publisher, publication year, ISBN, subjects, abstracts, and language
- **Full MARC21 records** preserved for comprehensive bibliographic information
- **License tracking** with specific Creative Commons license types (CC BY, CC BY-NC-ND, etc.) enabling filtering by usage rights
- **Predominantly CC BY licensed** (71.5%) - most permissive for ML applications
- **Predominantly English** with some German, Italian, French, and Spanish books

### Use Cases

This dataset is designed for:

1. **Training VLMs** to extract bibliographic metadata from book title pages and front matter
2. **Evaluating document understanding models** on structured metadata extraction tasks
3. **Benchmarking VLM performance** against ground-truth MARC21 catalog records
4. **Developing automated cataloging tools** for libraries and digital repositories
5. **Research in scholarly communication** and open access publishing patterns


## Dataset Structure

### Format

The dataset contains book metadata with images from the first few pages of each book.

### Data Fields

Each record contains the following fields:

**Core Bibliographic Metadata:**

- `record_id` (string): Unique DOAB record identifier
- `title` (string): Main title of the work
- `subtitle` (string, nullable): Subtitle if present
- `statement_of_responsibility` (string, nullable): Statement of responsibility from title field
- `authors` (list[string], nullable): List of authors
- `editors` (list[string], nullable): List of editors
- `publisher` (string): Publisher name
- `publication_year` (string): Year of publication
- `isbn` (list[string], nullable): ISBN numbers
- `language` (string): ISO 639-2/3 language code

**Subject and Description:**

- `subjects` (list[string], nullable): Subject headings (LCSH, BISAC, keywords)
- `abstract` (string, nullable): Book description/abstract
- `series` (string, nullable): Series title if part of a series
- `physical_description` (string, nullable): Physical details (page count, etc.)

**Access and Rights:**

- `license_type` (string): Specific Creative Commons license (e.g., "CC BY", "CC BY-NC-ND")
- `license_url` (string): Full URL to license deed
- `license_version` (string): License version (e.g., "4.0")
- `license_text` (string): Original license text from MARC record

**URLs:**

- `url_doab_handle` (string, nullable): DOAB catalog record URL
- `url_pdf` (string): Direct PDF download URL
- `url_doi` (string, nullable): DOI URL if available
- `url_oapen_viewer` (string, nullable): OAPEN viewer URL
- `url_other` (list[string]): Other related URLs

**Images:**

- `images` (list[Image]): Images from the first few pages of the book

**Technical:**

- `raw_marc` (string): Complete MARC21 record in JSON format preserving all original cataloging information. This field contains the full bibliographic record and can be used for advanced applications requiring access to MARC fields not extracted into the structured metadata fields above.

### Data Splits

| Split     | Records   |
| --------- | --------- |
| Train     | 9,363     |
| **Total** | **9,363** |

### License Distribution

The dataset includes books under various Creative Commons licenses, allowing users to filter by usage rights:

| License Type     | Books           | Commercial Use | Derivatives Allowed |
| ---------------- | --------------- | -------------- | ------------------- |
| CC BY            | 6,693 (71.5%)   | ✅ Yes         | ✅ Yes              |
| CC BY-NC-ND      | 1,046 (11.2%)   | ❌ No          | ❌ No               |
| CC BY-NC-SA      | 879 (9.4%)      | ❌ No          | ✅ Yes (ShareAlike) |
| CC BY-NC         | 532 (5.7%)      | ❌ No          | ✅ Yes              |
| CC BY-SA         | 147 (1.6%)      | ✅ Yes         | ✅ Yes (ShareAlike) |
| CC (Unspecified) | 37 (0.4%)       | ⚠️ Varies      | ⚠️ Varies           |
| CC BY-ND         | 29 (0.3%)       | ✅ Yes         | ❌ No               |

**Note:** Filter by `license_type` to ensure compliance with your use case (e.g., use only CC BY for commercial applications).

## Loading the Dataset

### Basic Loading

```python
from datasets import load_dataset

# Load full dataset
dataset = load_dataset("biglam/doab-metadata-extraction")

# Access train split
train = dataset['train']

# View first record
print(train[0])
```

### Accessing Images and Metadata

```python
# Get a single record
record = train[0]

# Access metadata
print(f"Title: {record['title']}")
print(f"Authors: {record['authors']}")
print(f"Publisher: {record['publisher']}")
print(f"Abstract: {record['abstract']}")
print(f"License: {record['license_type']}")

# Access page images
images = record['images']  # List of PIL Images
print(f"Number of pages: {len(images)}")

# Display first page
images[0].show()
```

### Filtering by License

```python
# Filter to only commercially-usable books (CC BY, CC BY-SA, CC BY-ND)
commercial_ok = train.filter(
    lambda x: x['license_type'] in ['CC BY', 'CC BY-SA', 'CC BY-ND']
)

# Filter to only most permissive license
cc_by_only = train.filter(lambda x: x['license_type'] == 'CC BY')

# Filter to derivative-allowed licenses
derivatives_ok = train.filter(
    lambda x: x['license_type'] in ['CC BY', 'CC BY-SA', 'CC BY-NC', 'CC BY-NC-SA']
)
```

### Filtering by Language

```python
# English books only
english_books = train.filter(lambda x: x['language'] == 'eng')

# Non-English books
non_english = train.filter(lambda x: x['language'] != 'eng')

# Specific languages
german_books = train.filter(lambda x: x['language'] == 'ger')
italian_books = train.filter(lambda x: x['language'] == 'ita')
```


## Dataset Creation

### Source Data

This dataset is derived from the Penn State ScholarSphere collection of DOAB (Directory of Open Access Books) MARC21 records:

- **Source**: [Penn State ScholarSphere](https://scholarsphere.psu.edu/resources/f917840a-5ee8-4f08-b3b0-e985e2638380)
- **Original MARC Records**: 65,307 records with Creative Commons licenses
- **PDFs with Direct URLs**: 37,673 records
- **Successfully Downloaded**: ~9,400 PDFs
- **Dataset Records**: 9,363 books with extracted page images

### Processing Pipeline

1. **MARC Parsing**: Extracted structured metadata from MARC21 records using `pymarc`
2. **License Extraction**: Parsed Creative Commons license types from MARC 540 field
3. **URL Classification**: Categorized URLs into PDF downloads, DOI links, catalog records
4. **PDF Download**: Asynchronous download with retry logic and resume capability
5. **Image Extraction**: Extracted first few pages from each PDF as images
6. **Dataset Preparation**: Organized with metadata and page images

### Curation Rationale

The dataset focuses on:

- Books with **direct PDF download URLs** (not just catalog records)
- **Creative Commons licenses** 
- **Successfully downloadable PDFs** (quality control through actual downloads)
- **Professional cataloging metadata** from DOAB/OAPEN library networks
- **Page images instead of full PDFs** to reduce dataset size while maintaining utility for metadata extraction

### Quality Notes

- All records include successfully extracted page images
- MARC metadata is professional library cataloging quality
- Page images may vary in quality (mix of born-digital PDFs and scanned images)
- Language distribution reflects DOAB's European academic publishing focus

## Limitations and Considerations

### Coverage Limitations

- **European/Academic Bias**: Strong representation of European academic publishers due to DOAB/OAPEN network
- **Open Access Only**: Does not represent commercial scholarly publishing
- **Language Distribution**: Heavily English-dominant; limited representation of other languages
- **Subject Areas**: Reflects open access publishing patterns (humanities and social sciences more common)

### Ethical Considerations

- All content is legally published as open access with Creative Commons licenses
- Users should filter by `license_type` to ensure compliance with their use case
- Attribution should be provided as per CC license requirements
- Commercial users should filter to exclude NC (Non-Commercial) licenses

## Citation and Attribution

### Dataset Citation

```bibtex
@dataset{doab_metadata_extraction_2024,
  title={DOAB Open Access Books - Metadata Extraction Dataset},
  author={van Strien, Daniel},
  year={2024},
  publisher={HuggingFace},
  url={https://huggingface.co/datasets/biglam/doab-metadata-extraction}
}
```

### Source Data Citation

```bibtex
@dataset{penn_state_doab_2024,
  title={MARC files of DOAB metadata (May 2024)},
  author={{Penn State University Libraries}},
  year={2024},
  publisher={ScholarSphere},
  doi={10.26207/f917-840a},
  url={https://scholarsphere.psu.edu/resources/f917840a-5ee8-4f08-b3b0-e985e2638380}
}
```

### DOAB Acknowledgment

This dataset is built on bibliographic metadata from the [Directory of Open Access Books (DOAB)](https://www.doabooks.org/), a community-driven discovery service for open access books coordinated by OAPEN Foundation.

## Additional Resources

- **MARC21 Format Documentation**: [Library of Congress](https://www.loc.gov/marc/bibliographic/)

## License

This dataset contains content under multiple licenses. The metadata and dataset structure are provided as-is, but individual book content retains the original Creative Commons licenses as specified in the `license_type` field. Users must comply with the specific license of each book:

- **CC BY**: Free use with attribution
- **CC BY-NC**: Free use with attribution, non-commercial only
- **CC BY-ND**: Free use with attribution, no derivatives
- **CC BY-SA**: Free use with attribution, share-alike
- **CC BY-NC-ND**: Most restrictive - non-commercial, no derivatives
- **CC BY-NC-SA**: Non-commercial, share-alike

Filter by `license_type` to ensure compliance with your use case.