File size: 12,537 Bytes
			
			dc343f1 349d844 13e8e29 dc343f1 349d844  | 
								1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371  | 
								---
license: other
task_categories:
- image-to-text
- image-text-to-text
tags:
- metadata-extraction
- glam
- MARC21
- library-science
size_categories:
- 1K<n<10K
language:
- en
- de
- it
- fr
- es
pretty_name: DOAB Open Access Books Metadata Extraction Dataset
dataset_info:
  features:
  - name: record_id
    dtype: string
  - name: title
    dtype: string
  - name: subtitle
    dtype: string
  - name: statement_of_responsibility
    dtype: 'null'
  - name: authors
    dtype: 'null'
  - name: editors
    dtype: 'null'
  - name: publisher
    dtype: string
  - name: publication_year
    dtype: string
  - name: isbn
    list: string
  - name: subjects
    list: string
  - name: language
    dtype: string
  - name: url_doab_handle
    dtype: string
  - name: url_pdf
    dtype: string
  - name: url_doi
    dtype: 'null'
  - name: url_oapen_viewer
    dtype: 'null'
  - name: url_other
    list: string
  - name: license_type
    dtype: string
  - name: license_url
    dtype: string
  - name: license_version
    dtype: string
  - name: license_text
    dtype: string
  - name: abstract
    dtype: string
  - name: series
    dtype: string
  - name: physical_description
    dtype: string
  - name: raw_marc
    dtype: string
  - name: pdf_path
    dtype: string
  - name: page_texts
    list: string
  - name: page_numbers
    list: int64
  - name: num_pages
    dtype: int64
  - name: page_images
    list: image
  splits:
  - name: train
    num_bytes: 9631218054
    num_examples: 8086
  download_size: 9289649199
  dataset_size: 9631218054
configs:
- config_name: default
  data_files:
  - split: train
    path: data/train-*
---
# DOAB Open Access Books - Metadata Extraction Dataset
## Dataset Description
This dataset contains **9,363 open access books** with page images and rich bibliographic metadata extracted from MARC21 records, curated specifically for training and evaluating Vision Language Models (VLMs) on automatic metadata extraction from scholarly monographs.
The dataset is derived from the [Penn State ScholarSphere DOAB collection](https://scholarsphere.psu.edu/resources/f917840a-5ee8-4f08-b3b0-e985e2638380) (Directory of Open Access Books), focusing on books with Creative Commons licenses that permit research and machine learning applications.
> **Note**: This version contains extracted images from the first few pages of each book to reduce dataset size and facilitate ML applications. Open an issue if a raw version with full PDFs would be of use.
### Key Features
- **9,363 open access books** with page images and metadata
- **Page images** extracted from the first few pages of each book
- **Rich metadata** including title, subtitle, authors, editors, publisher, publication year, ISBN, subjects, abstracts, and language
- **Full MARC21 records** preserved for comprehensive bibliographic information
- **License tracking** with specific Creative Commons license types (CC BY, CC BY-NC-ND, etc.) enabling filtering by usage rights
- **Predominantly CC BY licensed** (71.5%) - most permissive for ML applications
- **Predominantly English** with some German, Italian, French, and Spanish books
### Use Cases
This dataset is designed for:
1. **Training VLMs** to extract bibliographic metadata from book title pages and front matter
2. **Evaluating document understanding models** on structured metadata extraction tasks
3. **Benchmarking VLM performance** against ground-truth MARC21 catalog records
4. **Developing automated cataloging tools** for libraries and digital repositories
5. **Research in scholarly communication** and open access publishing patterns
## Dataset Structure
### Format
The dataset contains book metadata with images from the first few pages of each book.
### Data Fields
Each record contains the following fields:
**Core Bibliographic Metadata:**
- `record_id` (string): Unique DOAB record identifier
- `title` (string): Main title of the work
- `subtitle` (string, nullable): Subtitle if present
- `statement_of_responsibility` (string, nullable): Statement of responsibility from title field
- `authors` (list[string], nullable): List of authors
- `editors` (list[string], nullable): List of editors
- `publisher` (string): Publisher name
- `publication_year` (string): Year of publication
- `isbn` (list[string], nullable): ISBN numbers
- `language` (string): ISO 639-2/3 language code
**Subject and Description:**
- `subjects` (list[string], nullable): Subject headings (LCSH, BISAC, keywords)
- `abstract` (string, nullable): Book description/abstract
- `series` (string, nullable): Series title if part of a series
- `physical_description` (string, nullable): Physical details (page count, etc.)
**Access and Rights:**
- `license_type` (string): Specific Creative Commons license (e.g., "CC BY", "CC BY-NC-ND")
- `license_url` (string): Full URL to license deed
- `license_version` (string): License version (e.g., "4.0")
- `license_text` (string): Original license text from MARC record
**URLs:**
- `url_doab_handle` (string, nullable): DOAB catalog record URL
- `url_pdf` (string): Direct PDF download URL
- `url_doi` (string, nullable): DOI URL if available
- `url_oapen_viewer` (string, nullable): OAPEN viewer URL
- `url_other` (list[string]): Other related URLs
**Images:**
- `images` (list[Image]): Images from the first few pages of the book
**Technical:**
- `raw_marc` (string): Complete MARC21 record in JSON format preserving all original cataloging information. This field contains the full bibliographic record and can be used for advanced applications requiring access to MARC fields not extracted into the structured metadata fields above.
### Data Splits
| Split     | Records   |
| --------- | --------- |
| Train     | 9,363     |
| **Total** | **9,363** |
### License Distribution
The dataset includes books under various Creative Commons licenses, allowing users to filter by usage rights:
| License Type     | Books           | Commercial Use | Derivatives Allowed |
| ---------------- | --------------- | -------------- | ------------------- |
| CC BY            | 6,693 (71.5%)   | ✅ Yes         | ✅ Yes              |
| CC BY-NC-ND      | 1,046 (11.2%)   | ❌ No          | ❌ No               |
| CC BY-NC-SA      | 879 (9.4%)      | ❌ No          | ✅ Yes (ShareAlike) |
| CC BY-NC         | 532 (5.7%)      | ❌ No          | ✅ Yes              |
| CC BY-SA         | 147 (1.6%)      | ✅ Yes         | ✅ Yes (ShareAlike) |
| CC (Unspecified) | 37 (0.4%)       | ⚠️ Varies      | ⚠️ Varies           |
| CC BY-ND         | 29 (0.3%)       | ✅ Yes         | ❌ No               |
**Note:** Filter by `license_type` to ensure compliance with your use case (e.g., use only CC BY for commercial applications).
## Loading the Dataset
### Basic Loading
```python
from datasets import load_dataset
# Load full dataset
dataset = load_dataset("biglam/doab-metadata-extraction")
# Access train split
train = dataset['train']
# View first record
print(train[0])
```
### Accessing Images and Metadata
```python
# Get a single record
record = train[0]
# Access metadata
print(f"Title: {record['title']}")
print(f"Authors: {record['authors']}")
print(f"Publisher: {record['publisher']}")
print(f"Abstract: {record['abstract']}")
print(f"License: {record['license_type']}")
# Access page images
images = record['images']  # List of PIL Images
print(f"Number of pages: {len(images)}")
# Display first page
images[0].show()
```
### Filtering by License
```python
# Filter to only commercially-usable books (CC BY, CC BY-SA, CC BY-ND)
commercial_ok = train.filter(
    lambda x: x['license_type'] in ['CC BY', 'CC BY-SA', 'CC BY-ND']
)
# Filter to only most permissive license
cc_by_only = train.filter(lambda x: x['license_type'] == 'CC BY')
# Filter to derivative-allowed licenses
derivatives_ok = train.filter(
    lambda x: x['license_type'] in ['CC BY', 'CC BY-SA', 'CC BY-NC', 'CC BY-NC-SA']
)
```
### Filtering by Language
```python
# English books only
english_books = train.filter(lambda x: x['language'] == 'eng')
# Non-English books
non_english = train.filter(lambda x: x['language'] != 'eng')
# Specific languages
german_books = train.filter(lambda x: x['language'] == 'ger')
italian_books = train.filter(lambda x: x['language'] == 'ita')
```
## Dataset Creation
### Source Data
This dataset is derived from the Penn State ScholarSphere collection of DOAB (Directory of Open Access Books) MARC21 records:
- **Source**: [Penn State ScholarSphere](https://scholarsphere.psu.edu/resources/f917840a-5ee8-4f08-b3b0-e985e2638380)
- **Original MARC Records**: 65,307 records with Creative Commons licenses
- **PDFs with Direct URLs**: 37,673 records
- **Successfully Downloaded**: ~9,400 PDFs
- **Dataset Records**: 9,363 books with extracted page images
### Processing Pipeline
1. **MARC Parsing**: Extracted structured metadata from MARC21 records using `pymarc`
2. **License Extraction**: Parsed Creative Commons license types from MARC 540 field
3. **URL Classification**: Categorized URLs into PDF downloads, DOI links, catalog records
4. **PDF Download**: Asynchronous download with retry logic and resume capability
5. **Image Extraction**: Extracted first few pages from each PDF as images
6. **Dataset Preparation**: Organized with metadata and page images
### Curation Rationale
The dataset focuses on:
- Books with **direct PDF download URLs** (not just catalog records)
- **Creative Commons licenses** 
- **Successfully downloadable PDFs** (quality control through actual downloads)
- **Professional cataloging metadata** from DOAB/OAPEN library networks
- **Page images instead of full PDFs** to reduce dataset size while maintaining utility for metadata extraction
### Quality Notes
- All records include successfully extracted page images
- MARC metadata is professional library cataloging quality
- Page images may vary in quality (mix of born-digital PDFs and scanned images)
- Language distribution reflects DOAB's European academic publishing focus
## Limitations and Considerations
### Coverage Limitations
- **European/Academic Bias**: Strong representation of European academic publishers due to DOAB/OAPEN network
- **Open Access Only**: Does not represent commercial scholarly publishing
- **Language Distribution**: Heavily English-dominant; limited representation of other languages
- **Subject Areas**: Reflects open access publishing patterns (humanities and social sciences more common)
### Ethical Considerations
- All content is legally published as open access with Creative Commons licenses
- Users should filter by `license_type` to ensure compliance with their use case
- Attribution should be provided as per CC license requirements
- Commercial users should filter to exclude NC (Non-Commercial) licenses
## Citation and Attribution
### Dataset Citation
```bibtex
@dataset{doab_metadata_extraction_2024,
  title={DOAB Open Access Books - Metadata Extraction Dataset},
  author={van Strien, Daniel},
  year={2024},
  publisher={HuggingFace},
  url={https://huggingface.co/datasets/biglam/doab-metadata-extraction}
}
```
### Source Data Citation
```bibtex
@dataset{penn_state_doab_2024,
  title={MARC files of DOAB metadata (May 2024)},
  author={{Penn State University Libraries}},
  year={2024},
  publisher={ScholarSphere},
  doi={10.26207/f917-840a},
  url={https://scholarsphere.psu.edu/resources/f917840a-5ee8-4f08-b3b0-e985e2638380}
}
```
### DOAB Acknowledgment
This dataset is built on bibliographic metadata from the [Directory of Open Access Books (DOAB)](https://www.doabooks.org/), a community-driven discovery service for open access books coordinated by OAPEN Foundation.
## Additional Resources
- **MARC21 Format Documentation**: [Library of Congress](https://www.loc.gov/marc/bibliographic/)
## License
This dataset contains content under multiple licenses. The metadata and dataset structure are provided as-is, but individual book content retains the original Creative Commons licenses as specified in the `license_type` field. Users must comply with the specific license of each book:
- **CC BY**: Free use with attribution
- **CC BY-NC**: Free use with attribution, non-commercial only
- **CC BY-ND**: Free use with attribution, no derivatives
- **CC BY-SA**: Free use with attribution, share-alike
- **CC BY-NC-ND**: Most restrictive - non-commercial, no derivatives
- **CC BY-NC-SA**: Non-commercial, share-alike
Filter by `license_type` to ensure compliance with your use case.
 |