Datasets:
Tasks:
Text Classification
Modalities:
Text
Sub-tasks:
sentiment-classification
Languages:
English
Size:
10K - 100K
ArXiv:
License:
Update README.md
Browse files
README.md
CHANGED
|
@@ -91,6 +91,20 @@ In general, model would be trained on `train_all`, the most representative train
|
|
| 91 |
**IMPORTANT NOTE:** To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `train_coling2022` and `test_coling2022` for temporal-shift, and `train_coling2022_random` and `test_coling2022_random` fir random split (the coling2022 split does not have validation set).
|
| 92 |
|
| 93 |
### Models
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 94 |
Model fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single/blob/main/lm_finetuning.py).
|
| 95 |
|
| 96 |
## Dataset Structure
|
|
|
|
| 91 |
**IMPORTANT NOTE:** To get a result that is comparable with the results of the COLING 2022 Tweet Topic paper, please use `train_coling2022` and `test_coling2022` for temporal-shift, and `train_coling2022_random` and `test_coling2022_random` fir random split (the coling2022 split does not have validation set).
|
| 92 |
|
| 93 |
### Models
|
| 94 |
+
|
| 95 |
+
| model | training data | F1 | F1 (macro) | Accuracy |
|
| 96 |
+
|:------------------------------------------------------------------------------------------------------------------------------------------------------------|:------------------|----------:|-------------:|-----------:|
|
| 97 |
+
| [cardiffnlp/roberta-large-tweet-topic-single-all](https://huggingface.co/cardiffnlp/roberta-large-tweet-topic-single-all) | all (2020 + 2021) | 0.0702894 | 0.0448345 | 0.0702894 |
|
| 98 |
+
| [cardiffnlp/roberta-base-tweet-topic-single-all](https://huggingface.co/cardiffnlp/roberta-base-tweet-topic-single-all) | all (2020 + 2021) | 0.105139 | 0.0317121 | 0.105139 |
|
| 99 |
+
| [cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-all) | all (2020 + 2021) | 0.0313054 | 0.0116821 | 0.0313054 |
|
| 100 |
+
| [cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-all) | all (2020 + 2021) | 0.396338 | 0.0946136 | 0.396338 |
|
| 101 |
+
| [cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-all) | all (2020 + 2021) | 0.149439 | 0.0739154 | 0.149439 |
|
| 102 |
+
| [cardiffnlp/roberta-large-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/roberta-large-tweet-topic-single-2020) | 2020 only | 0.0478441 | 0.0162973 | 0.0478441 |
|
| 103 |
+
| [cardiffnlp/roberta-base-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/roberta-base-tweet-topic-single-2020) | 2020 only | 0.0519787 | 0.0164701 | 0.0519787 |
|
| 104 |
+
| [cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-2019-90m-tweet-topic-single-2020) | 2020 only | 0.0519787 | 0.0164701 | 0.0519787 |
|
| 105 |
+
| [cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2020-tweet-topic-single-2020) | 2020 only | 0.105139 | 0.0317121 | 0.105139 |
|
| 106 |
+
| [cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-2020](https://huggingface.co/cardiffnlp/twitter-roberta-base-dec2021-tweet-topic-single-2020) | 2020 only | 0.105139 | 0.0357851 | 0.105139 |
|
| 107 |
+
|
| 108 |
Model fine-tuning script can be found [here](https://huggingface.co/datasets/cardiffnlp/tweet_topic_single/blob/main/lm_finetuning.py).
|
| 109 |
|
| 110 |
## Dataset Structure
|