Datasets:
Delete reddit_climate_data.py
Browse files- reddit_climate_data.py +0 -163
reddit_climate_data.py
DELETED
|
@@ -1,163 +0,0 @@
|
|
| 1 |
-
|
| 2 |
-
"""TODO: Add a description here."""
|
| 3 |
-
|
| 4 |
-
|
| 5 |
-
import csv
|
| 6 |
-
import json
|
| 7 |
-
import os
|
| 8 |
-
import logging
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
import datasets
|
| 12 |
-
|
| 13 |
-
|
| 14 |
-
# TODO: Add BibTeX citation
|
| 15 |
-
# Find for instance the citation on arxiv or on the dataset repo/website
|
| 16 |
-
_CITATION = """\
|
| 17 |
-
@InProceedings{huggingface:dataset,
|
| 18 |
-
title = {A great new dataset},
|
| 19 |
-
author={huggingface, Inc.
|
| 20 |
-
},
|
| 21 |
-
year={2024}
|
| 22 |
-
}
|
| 23 |
-
"""
|
| 24 |
-
|
| 25 |
-
# TODO: Add description of the dataset here
|
| 26 |
-
# You can copy an official description
|
| 27 |
-
_DESCRIPTION = """\
|
| 28 |
-
This new dataset is designed to solve this great NLP task and is crafted with a lot of care.
|
| 29 |
-
"""
|
| 30 |
-
|
| 31 |
-
# TODO: Add a link to an official homepage for the dataset here
|
| 32 |
-
_HOMEPAGE = ""
|
| 33 |
-
|
| 34 |
-
# TODO: Add the licence for the dataset here if you can find it
|
| 35 |
-
_LICENSE = ""
|
| 36 |
-
|
| 37 |
-
# TODO: Add link to the official dataset URLs here
|
| 38 |
-
# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
|
| 39 |
-
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
|
| 40 |
-
_URLS = {
|
| 41 |
-
"reddit_climate": "cathw/reddit_climate_comment"
|
| 42 |
-
}
|
| 43 |
-
|
| 44 |
-
# TODO: Name of the dataset usually matches the script name with CamelCase instead of snake_case
|
| 45 |
-
class NewDataset(datasets.GeneratorBasedBuilder):
|
| 46 |
-
"""TODO: Short description of my dataset."""
|
| 47 |
-
|
| 48 |
-
VERSION = datasets.Version("1.1.0")
|
| 49 |
-
|
| 50 |
-
# This is an example of a dataset with multiple configurations.
|
| 51 |
-
# If you don't want/need to define several sub-sets in your dataset,
|
| 52 |
-
# just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.
|
| 53 |
-
|
| 54 |
-
# If you need to make complex sub-parts in the datasets with configurable options
|
| 55 |
-
# You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
|
| 56 |
-
# BUILDER_CONFIG_CLASS = MyBuilderConfig
|
| 57 |
-
|
| 58 |
-
# You will be able to load one or the other configurations in the following list with
|
| 59 |
-
# data = datasets.load_dataset('my_dataset', 'first_domain')
|
| 60 |
-
# data = datasets.load_dataset('my_dataset', 'second_domain')
|
| 61 |
-
BUILDER_CONFIGS = [
|
| 62 |
-
datasets.BuilderConfig(name="reddit_climate", version=VERSION, description="This part of my dataset covers a first domain")
|
| 63 |
-
]
|
| 64 |
-
|
| 65 |
-
DEFAULT_CONFIG_NAME = "reddit_climate" # It's not mandatory to have a default configuration. Just use one if it make sense.
|
| 66 |
-
|
| 67 |
-
def _info(self):
|
| 68 |
-
|
| 69 |
-
features = datasets.Features({
|
| 70 |
-
"Subreddit": datasets.Value("string"),
|
| 71 |
-
"Posts": datasets.Sequence({
|
| 72 |
-
"PostID": datasets.Value("int32"),
|
| 73 |
-
"PostTitle": datasets.Value("string"),
|
| 74 |
-
"Comments": datasets.Sequence({
|
| 75 |
-
"CommentID": datasets.Value("string"),
|
| 76 |
-
"Author": datasets.Value("string"),
|
| 77 |
-
"CommentBody": datasets.Value("string"),
|
| 78 |
-
"Timestamp": datasets.Value("string"),
|
| 79 |
-
"Upvotes": datasets.Value("int32"),
|
| 80 |
-
"NumberofReplies": datasets.Value("int32"),
|
| 81 |
-
}),
|
| 82 |
-
}),
|
| 83 |
-
})
|
| 84 |
-
return datasets.DatasetInfo(
|
| 85 |
-
# This is the description that will appear on the datasets page.
|
| 86 |
-
description=_DESCRIPTION,
|
| 87 |
-
# This defines the different columns of the dataset and their types
|
| 88 |
-
features=features, # Here we define them above because they are different between the two configurations
|
| 89 |
-
# If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
|
| 90 |
-
# specify them. They'll be used if as_supervised=True in builder.as_dataset.
|
| 91 |
-
# supervised_keys=("sentence", "label"),
|
| 92 |
-
# Homepage of the dataset for documentation
|
| 93 |
-
homepage=_HOMEPAGE,
|
| 94 |
-
# License for the dataset if available
|
| 95 |
-
license=_LICENSE,
|
| 96 |
-
# Citation for the dataset
|
| 97 |
-
citation=_CITATION,
|
| 98 |
-
)
|
| 99 |
-
|
| 100 |
-
def _split_generators(self, dl_manager):
|
| 101 |
-
# TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
|
| 102 |
-
# If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name
|
| 103 |
-
|
| 104 |
-
# dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
|
| 105 |
-
# It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
|
| 106 |
-
# By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
|
| 107 |
-
config_name = getattr(self.config, 'name', self.DEFAULT_CONFIG_NAME)
|
| 108 |
-
urls = _URLS.get(config_name, {}) # Get the URLs for the configuration name, if not found, return an empty dictionary
|
| 109 |
-
data_dir = dl_manager.download_and_extract(urls)
|
| 110 |
-
return [
|
| 111 |
-
datasets.SplitGenerator(
|
| 112 |
-
name=datasets.Split.TRAIN,
|
| 113 |
-
# These kwargs will be passed to _generate_examples
|
| 114 |
-
gen_kwargs={
|
| 115 |
-
"filepath": data_dir,
|
| 116 |
-
"split": "train",
|
| 117 |
-
},
|
| 118 |
-
),
|
| 119 |
-
]
|
| 120 |
-
|
| 121 |
-
# method parameters are unpacked from `gen_kwargs` as given in `_split_generators`
|
| 122 |
-
def _generate_examples(self, filepath, split):
|
| 123 |
-
# This method handles input defined in _split_generators to yield (key, example) tuples from the dataset.
|
| 124 |
-
# The `key` is for legacy reasons (tfds) and is not important in itself, but must be unique for each example.
|
| 125 |
-
with open(filepath, encoding="utf-8") as f:
|
| 126 |
-
data = json.load(f)
|
| 127 |
-
for idx, row in enumerate(data):
|
| 128 |
-
subreddit = row["Subreddit"]
|
| 129 |
-
posts = []
|
| 130 |
-
# Check if the "Posts" key is present in the current row
|
| 131 |
-
if "Posts" in row:
|
| 132 |
-
for post in row["Posts"]:
|
| 133 |
-
post_id = post["PostID"]
|
| 134 |
-
post_title = post["PostTitle"]
|
| 135 |
-
comments = []
|
| 136 |
-
for comment in post["Comments"]:
|
| 137 |
-
comment_id = comment["CommentID"]
|
| 138 |
-
author = comment["Author"]
|
| 139 |
-
comment_body = comment["CommentBody"]
|
| 140 |
-
timestamp = comment["Timestamp"]
|
| 141 |
-
upvotes = comment["Upvotes"]
|
| 142 |
-
number_of_replies = comment["NumberofReplies"]
|
| 143 |
-
comments.append({
|
| 144 |
-
"CommentID": comment_id,
|
| 145 |
-
"Author": author,
|
| 146 |
-
"CommentBody": comment_body,
|
| 147 |
-
"Timestamp": timestamp,
|
| 148 |
-
"Upvotes": upvotes,
|
| 149 |
-
"NumberofReplies": number_of_replies
|
| 150 |
-
})
|
| 151 |
-
posts.append({
|
| 152 |
-
"PostID": post_id,
|
| 153 |
-
"PostTitle": post_title,
|
| 154 |
-
"Comments": comments
|
| 155 |
-
})
|
| 156 |
-
else:
|
| 157 |
-
# Handle cases where the "Posts" key is missing
|
| 158 |
-
posts = None
|
| 159 |
-
|
| 160 |
-
yield idx, {
|
| 161 |
-
"Subreddit": subreddit,
|
| 162 |
-
"Posts": posts
|
| 163 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|