import os from datasets import DatasetInfo, Features, ClassLabel, Image, GeneratorBasedBuilder, Split class UTM_Dataset(GeneratorBasedBuilder): """UTM Dataset organized in train/validation/test splits with subfolders as classes.""" VERSION = "1.0.0" def _info(self): """Returns the dataset metadata, features, and supervised keys.""" return DatasetInfo( description="UTM Dataset organized in train/validation/test with subfolders as classes", features=Features( { "image": Image(), # images "label": ClassLabel(names=self._get_class_names()) # labels from subfolder names } ), supervised_keys=("image", "label"), ) def _get_class_names(self): """Get class names from the train folder subdirectories.""" train_dir = os.path.join(self.config.data_dir, "train") return sorted( [d for d in os.listdir(train_dir) if os.path.isdir(os.path.join(train_dir, d))] ) def _split_generators(self, dl_manager): """Defines the splits and their corresponding folders.""" data_dir = self.config.data_dir return [ Split.TRAIN: self._generate_examples(os.path.join(data_dir, "train")), Split.VALIDATION: self._generate_examples(os.path.join(data_dir, "validation")), Split.TEST: self._generate_examples(os.path.join(data_dir, "test")), ] def _generate_examples(self, path): """Yields (id, example) tuples for each image in the folder.""" for class_name in sorted(os.listdir(path)): class_dir = os.path.join(path, class_name) if not os.path.isdir(class_dir): continue for fname in sorted(os.listdir(class_dir)): if fname.lower().endswith((".png", ".jpg", ".jpeg")): # Unique id for each example yield f"{class_name}_{fname}", { "image": os.path.join(class_dir, fname), "label": class_name, }