Datasets:
Convert dataset to Parquet (#3)
Browse files- Convert dataset to Parquet (da9abc5fe22156e058e5469f43de34c7b7fa53aa)
- Add 'en2es' config data files (acac9f3acb590238d6fa57b70404804ef52aa453)
- Add 'en2fr' config data files (fe26a6020e2be24899e912c6605888ceae760769)
- Delete loading script (692be6f59a3c88e907fda82e987fdebd99f267b8)
- README.md +22 -9
- en2bg/train-00000-of-00001.parquet +3 -0
- en2es/train-00000-of-00001.parquet +3 -0
- en2fr/train-00000-of-00001.parquet +3 -0
- europa_eac_tm.py +0 -226
README.md
CHANGED
|
@@ -59,10 +59,10 @@ dataset_info:
|
|
| 59 |
'1': sentence_data
|
| 60 |
splits:
|
| 61 |
- name: train
|
| 62 |
-
num_bytes:
|
| 63 |
num_examples: 4061
|
| 64 |
-
download_size:
|
| 65 |
-
dataset_size:
|
| 66 |
- config_name: en2cs
|
| 67 |
features:
|
| 68 |
- name: translation
|
|
@@ -159,10 +159,10 @@ dataset_info:
|
|
| 159 |
'1': sentence_data
|
| 160 |
splits:
|
| 161 |
- name: train
|
| 162 |
-
num_bytes:
|
| 163 |
num_examples: 4303
|
| 164 |
-
download_size:
|
| 165 |
-
dataset_size:
|
| 166 |
- config_name: en2et
|
| 167 |
features:
|
| 168 |
- name: translation
|
|
@@ -219,10 +219,10 @@ dataset_info:
|
|
| 219 |
'1': sentence_data
|
| 220 |
splits:
|
| 221 |
- name: train
|
| 222 |
-
num_bytes:
|
| 223 |
num_examples: 4476
|
| 224 |
-
download_size:
|
| 225 |
-
dataset_size:
|
| 226 |
- config_name: en2hu
|
| 227 |
features:
|
| 228 |
- name: translation
|
|
@@ -523,6 +523,19 @@ dataset_info:
|
|
| 523 |
num_examples: 3198
|
| 524 |
download_size: 3521416
|
| 525 |
dataset_size: 328267
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 526 |
---
|
| 527 |
|
| 528 |
# Dataset Card for Europa Education and Culture Translation Memory (EAC-TM)
|
|
|
|
| 59 |
'1': sentence_data
|
| 60 |
splits:
|
| 61 |
- name: train
|
| 62 |
+
num_bytes: 664244
|
| 63 |
num_examples: 4061
|
| 64 |
+
download_size: 332039
|
| 65 |
+
dataset_size: 664244
|
| 66 |
- config_name: en2cs
|
| 67 |
features:
|
| 68 |
- name: translation
|
|
|
|
| 159 |
'1': sentence_data
|
| 160 |
splits:
|
| 161 |
- name: train
|
| 162 |
+
num_bytes: 555210
|
| 163 |
num_examples: 4303
|
| 164 |
+
download_size: 308680
|
| 165 |
+
dataset_size: 555210
|
| 166 |
- config_name: en2et
|
| 167 |
features:
|
| 168 |
- name: translation
|
|
|
|
| 219 |
'1': sentence_data
|
| 220 |
splits:
|
| 221 |
- name: train
|
| 222 |
+
num_bytes: 575571
|
| 223 |
num_examples: 4476
|
| 224 |
+
download_size: 321064
|
| 225 |
+
dataset_size: 575571
|
| 226 |
- config_name: en2hu
|
| 227 |
features:
|
| 228 |
- name: translation
|
|
|
|
| 523 |
num_examples: 3198
|
| 524 |
download_size: 3521416
|
| 525 |
dataset_size: 328267
|
| 526 |
+
configs:
|
| 527 |
+
- config_name: en2bg
|
| 528 |
+
data_files:
|
| 529 |
+
- split: train
|
| 530 |
+
path: en2bg/train-*
|
| 531 |
+
- config_name: en2es
|
| 532 |
+
data_files:
|
| 533 |
+
- split: train
|
| 534 |
+
path: en2es/train-*
|
| 535 |
+
- config_name: en2fr
|
| 536 |
+
data_files:
|
| 537 |
+
- split: train
|
| 538 |
+
path: en2fr/train-*
|
| 539 |
---
|
| 540 |
|
| 541 |
# Dataset Card for Europa Education and Culture Translation Memory (EAC-TM)
|
en2bg/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:9de4205b34d914bbffa91fd28db9a51adaf762f56c1a970b29fd58f8d6c94b3a
|
| 3 |
+
size 332039
|
en2es/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3b90ac0cc93ec7b3a385661b5c075a837dd5ec64236bf40430e29a1dbf913b1c
|
| 3 |
+
size 308680
|
en2fr/train-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:3a6e6c1d3c67a0f3d6afe881d83b2827efdefd2d64fb33a06ac4b3e3aa6b747a
|
| 3 |
+
size 321064
|
europa_eac_tm.py
DELETED
|
@@ -1,226 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
"""European commission Joint Reasearch Center's Education And Culture Translation Memory dataset"""
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
import os
|
| 19 |
-
from itertools import repeat
|
| 20 |
-
from xml.etree import ElementTree
|
| 21 |
-
|
| 22 |
-
import datasets
|
| 23 |
-
|
| 24 |
-
|
| 25 |
-
_CITATION = """\
|
| 26 |
-
@Article{Steinberger2014,
|
| 27 |
-
author={Steinberger, Ralf
|
| 28 |
-
and Ebrahim, Mohamed
|
| 29 |
-
and Poulis, Alexandros
|
| 30 |
-
and Carrasco-Benitez, Manuel
|
| 31 |
-
and Schl{\"u}ter, Patrick
|
| 32 |
-
and Przybyszewski, Marek
|
| 33 |
-
and Gilbro, Signe},
|
| 34 |
-
title={An overview of the European Union's highly multilingual parallel corpora},
|
| 35 |
-
journal={Language Resources and Evaluation},
|
| 36 |
-
year={2014},
|
| 37 |
-
month={Dec},
|
| 38 |
-
day={01},
|
| 39 |
-
volume={48},
|
| 40 |
-
number={4},
|
| 41 |
-
pages={679-707},
|
| 42 |
-
issn={1574-0218},
|
| 43 |
-
doi={10.1007/s10579-014-9277-0},
|
| 44 |
-
url={https://doi.org/10.1007/s10579-014-9277-0}
|
| 45 |
-
}
|
| 46 |
-
"""
|
| 47 |
-
|
| 48 |
-
_DESCRIPTION = """\
|
| 49 |
-
In October 2012, the European Union's (EU) Directorate General for Education and Culture ( DG EAC) released a \
|
| 50 |
-
translation memory (TM), i.e. a collection of sentences and their professionally produced translations, in \
|
| 51 |
-
twenty-six languages. This resource bears the name EAC Translation Memory, short EAC-TM.
|
| 52 |
-
|
| 53 |
-
EAC-TM covers up to 26 languages: 22 official languages of the EU (all except Irish) plus Icelandic, Croatian, \
|
| 54 |
-
Norwegian and Turkish. EAC-TM thus contains translations from English into the following 25 languages: Bulgarian, \
|
| 55 |
-
Czech, Danish, Dutch, Estonian, German, Greek, Finnish, French, Croatian, Hungarian, Icelandic, Italian, Latvian, \
|
| 56 |
-
Lithuanian, Maltese, Norwegian, Polish, Portuguese, Romanian, Slovak, Slovenian, Spanish, Swedish and Turkish.
|
| 57 |
-
|
| 58 |
-
All documents and sentences were originally written in English (source language is English) and then translated into \
|
| 59 |
-
the other languages. The texts were translated by staff of the National Agencies of the Lifelong Learning and Youth in \
|
| 60 |
-
Action programmes. They are typically professionals in the field of education/youth and EU programmes. They are thus not \
|
| 61 |
-
professional translators, but they are normally native speakers of the target language.
|
| 62 |
-
"""
|
| 63 |
-
|
| 64 |
-
_HOMEPAGE = "https://ec.europa.eu/jrc/en/language-technologies/eac-translation-memory"
|
| 65 |
-
|
| 66 |
-
_LICENSE = "\
|
| 67 |
-
Creative Commons Attribution 4.0 International(CC BY 4.0) licence \
|
| 68 |
-
© European Union, 1995-2020"
|
| 69 |
-
|
| 70 |
-
_VERSION = "1.0.0"
|
| 71 |
-
|
| 72 |
-
_DATA_URL = "https://wt-public.emm4u.eu/Resources/EAC-TM/EAC-TM-all.zip"
|
| 73 |
-
|
| 74 |
-
_AVAILABLE_LANGUAGES = (
|
| 75 |
-
"bg",
|
| 76 |
-
"cs",
|
| 77 |
-
"da",
|
| 78 |
-
"de",
|
| 79 |
-
"el",
|
| 80 |
-
"en",
|
| 81 |
-
"es",
|
| 82 |
-
"et",
|
| 83 |
-
"fi",
|
| 84 |
-
"fr",
|
| 85 |
-
"hu",
|
| 86 |
-
"is",
|
| 87 |
-
"it",
|
| 88 |
-
"lt",
|
| 89 |
-
"lv",
|
| 90 |
-
"mt",
|
| 91 |
-
"nb",
|
| 92 |
-
"nl",
|
| 93 |
-
"pl",
|
| 94 |
-
"pt",
|
| 95 |
-
"ro",
|
| 96 |
-
"sk",
|
| 97 |
-
"sl",
|
| 98 |
-
"sv",
|
| 99 |
-
"tr",
|
| 100 |
-
)
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
def _find_sentence(translation, language):
|
| 104 |
-
"""Util that returns the sentence in the given language from translation, or None if it is not found
|
| 105 |
-
|
| 106 |
-
Args:
|
| 107 |
-
translation: `xml.etree.ElementTree.Element`, xml tree element extracted from the translation memory files.
|
| 108 |
-
language: `str`, language of interest e.g. 'en'
|
| 109 |
-
|
| 110 |
-
Returns: `str` or `None`, can be `None` if the language of interest is not found in the translation
|
| 111 |
-
"""
|
| 112 |
-
# Retrieve the first <tuv> children of translation having xml:lang tag equal to language
|
| 113 |
-
namespaces = {"xml": "http://www.w3.org/XML/1998/namespace"}
|
| 114 |
-
seg_tag = translation.find(path=f".//tuv[@xml:lang='{language}']/seg", namespaces=namespaces)
|
| 115 |
-
if seg_tag is not None:
|
| 116 |
-
return seg_tag.text
|
| 117 |
-
return None
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
class EuropaEacTMConfig(datasets.BuilderConfig):
|
| 121 |
-
"""BuilderConfig for EuropaEacTM"""
|
| 122 |
-
|
| 123 |
-
def __init__(self, *args, language_pair=(None, None), **kwargs):
|
| 124 |
-
"""BuilderConfig for EuropaEacTM
|
| 125 |
-
|
| 126 |
-
Args:
|
| 127 |
-
language_pair: pair of languages that will be used for translation. Should
|
| 128 |
-
contain 2-letter coded strings. First will be used at source and second
|
| 129 |
-
as target in supervised mode. For example: ("ro", "en").
|
| 130 |
-
**kwargs: keyword arguments forwarded to super.
|
| 131 |
-
"""
|
| 132 |
-
name = f"{language_pair[0]}2{language_pair[1]}"
|
| 133 |
-
description = f"Translation dataset from {language_pair[0]} to {language_pair[1]}"
|
| 134 |
-
super(EuropaEacTMConfig, self).__init__(
|
| 135 |
-
*args,
|
| 136 |
-
name=name,
|
| 137 |
-
description=description,
|
| 138 |
-
**kwargs,
|
| 139 |
-
)
|
| 140 |
-
source, target = language_pair
|
| 141 |
-
assert source != target, "Source and target languages must be different}"
|
| 142 |
-
assert (source in _AVAILABLE_LANGUAGES) and (
|
| 143 |
-
target in _AVAILABLE_LANGUAGES
|
| 144 |
-
), f"Either source language {source} or target language {target} is not supported. Both must be one of : {_AVAILABLE_LANGUAGES}"
|
| 145 |
-
|
| 146 |
-
self.language_pair = language_pair
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
# TODO: Name of the dataset usually match the script name with CamelCase instead of snake_case
|
| 150 |
-
class EuropaEacTM(datasets.GeneratorBasedBuilder):
|
| 151 |
-
"""European Commission Joint Research Center's EAC Translation Memory"""
|
| 152 |
-
|
| 153 |
-
FORM_SENTENCE_TYPE = "form_data"
|
| 154 |
-
REFERENCE_SENTENCE_TYPE = "sentence_data"
|
| 155 |
-
|
| 156 |
-
# Only a few language pairs are listed here. You can use config to generate all language pairs !
|
| 157 |
-
BUILDER_CONFIGS = [
|
| 158 |
-
EuropaEacTMConfig(language_pair=("en", target), version=_VERSION) for target in ["bg", "es", "fr"]
|
| 159 |
-
]
|
| 160 |
-
BUILDER_CONFIG_CLASS = EuropaEacTMConfig
|
| 161 |
-
|
| 162 |
-
def _info(self):
|
| 163 |
-
source, target = self.config.language_pair
|
| 164 |
-
return datasets.DatasetInfo(
|
| 165 |
-
description=_DESCRIPTION,
|
| 166 |
-
features=datasets.Features(
|
| 167 |
-
{
|
| 168 |
-
"translation": datasets.features.Translation(languages=self.config.language_pair),
|
| 169 |
-
"sentence_type": datasets.features.ClassLabel(
|
| 170 |
-
names=[self.FORM_SENTENCE_TYPE, self.REFERENCE_SENTENCE_TYPE]
|
| 171 |
-
),
|
| 172 |
-
}
|
| 173 |
-
),
|
| 174 |
-
supervised_keys=(source, target),
|
| 175 |
-
homepage=_HOMEPAGE,
|
| 176 |
-
license=_LICENSE,
|
| 177 |
-
citation=_CITATION,
|
| 178 |
-
)
|
| 179 |
-
|
| 180 |
-
def _split_generators(self, dl_manager):
|
| 181 |
-
dl_dir = dl_manager.download_and_extract(_DATA_URL)
|
| 182 |
-
form_data_file = os.path.join(dl_dir, "EAC_FORMS.tmx")
|
| 183 |
-
reference_data_file = os.path.join(dl_dir, "EAC_REFRENCE_DATA.tmx")
|
| 184 |
-
source, target = self.config.language_pair
|
| 185 |
-
return [
|
| 186 |
-
datasets.SplitGenerator(
|
| 187 |
-
name=datasets.Split.TRAIN,
|
| 188 |
-
gen_kwargs={
|
| 189 |
-
"form_data_file": form_data_file,
|
| 190 |
-
"reference_data_file": reference_data_file,
|
| 191 |
-
"source_language": source,
|
| 192 |
-
"target_language": target,
|
| 193 |
-
},
|
| 194 |
-
),
|
| 195 |
-
]
|
| 196 |
-
|
| 197 |
-
def _generate_examples(
|
| 198 |
-
self,
|
| 199 |
-
form_data_file,
|
| 200 |
-
reference_data_file,
|
| 201 |
-
source_language,
|
| 202 |
-
target_language,
|
| 203 |
-
):
|
| 204 |
-
_id = 0
|
| 205 |
-
for (sentence_type, filepath) in [
|
| 206 |
-
(self.FORM_SENTENCE_TYPE, form_data_file),
|
| 207 |
-
(self.REFERENCE_SENTENCE_TYPE, reference_data_file),
|
| 208 |
-
]:
|
| 209 |
-
# Retrieve <tu></tu> tags in the tmx file
|
| 210 |
-
xml_element_tree = ElementTree.parse(filepath)
|
| 211 |
-
xml_body_tag = xml_element_tree.getroot().find("body")
|
| 212 |
-
assert xml_body_tag is not None, f"Invalid data: <body></body> tag not found in {filepath}"
|
| 213 |
-
translation_units = xml_body_tag.iter("tu")
|
| 214 |
-
|
| 215 |
-
# Pair sentence_type and translation_units
|
| 216 |
-
for sentence_type, translation in zip(repeat(sentence_type), translation_units):
|
| 217 |
-
source_sentence = _find_sentence(translation=translation, language=source_language)
|
| 218 |
-
target_sentence = _find_sentence(translation=translation, language=target_language)
|
| 219 |
-
if source_sentence is None or target_sentence is None:
|
| 220 |
-
continue
|
| 221 |
-
_id += 1
|
| 222 |
-
sentence_label = 0 if sentence_type == self.FORM_SENTENCE_TYPE else 1
|
| 223 |
-
yield _id, {
|
| 224 |
-
"translation": {source_language: source_sentence, target_language: target_sentence},
|
| 225 |
-
"sentence_type": sentence_label,
|
| 226 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|