Datasets:
Tasks:
Token Classification
Sub-tasks:
named-entity-recognition
Languages:
Turkish
Size:
100K<n<1M
License:
| # coding=utf-8 | |
| # Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor. | |
| # | |
| # Licensed under the Apache License, Version 2.0 (the "License"); | |
| # you may not use this file except in compliance with the License. | |
| # You may obtain a copy of the License at | |
| # | |
| # http://www.apache.org/licenses/LICENSE-2.0 | |
| # | |
| # Unless required by applicable law or agreed to in writing, software | |
| # distributed under the License is distributed on an "AS IS" BASIS, | |
| # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | |
| # See the License for the specific language governing permissions and | |
| # limitations under the License. | |
| """ Shrinked Turkish NER """ | |
| import os | |
| import datasets | |
| logger = datasets.logging.get_logger(__name__) | |
| _CITATION = """\ | |
| """ | |
| _DESCRIPTION = """\ | |
| Shrinked version (48 entity type) of the turkish_ner. | |
| Original turkish_ner dataset: Automatically annotated Turkish corpus for named entity recognition and text categorization using large-scale gazetteers. The constructed gazetteers contains approximately 300K entities with thousands of fine-grained entity types under 25 different domains. | |
| Shrinked entity types are: academic, academic_person, aircraft, album_person, anatomy, animal, architect_person, capital, chemical, clothes, country, culture, currency, date, food, genre, government, government_person, language, location, material, measure, medical, military, military_person, nation, newspaper, organization, organization_person, person, production_art_music, production_art_music_person, quantity, religion, science, shape, ship, software, space, space_person, sport, sport_name, sport_person, structure, subject, tech, train, vehicle | |
| """ | |
| _HOMEPAGE = "https://www.kaggle.com/behcetsenturk/shrinked-twnertc-turkish-ner-data-by-kuzgunlar" | |
| _LICENSE = "Attribution 4.0 International (CC BY 4.0)" | |
| _FILENAME = "train.txt" | |
| class TurkishShrinkedNER(datasets.GeneratorBasedBuilder): | |
| def manual_download_instructions(self): | |
| return """\ | |
| You need to go to https://www.kaggle.com/behcetsenturk/shrinked-twnertc-turkish-ner-data-by-kuzgunlar, | |
| and manually download the turkish_shrinked_ner. Once it is completed, | |
| a file named archive.zip will be appeared in your Downloads folder | |
| or whichever folder your browser chooses to save files to. You then have | |
| to unzip the file and move train.txt under <path/to/folder>. | |
| The <path/to/folder> can e.g. be "~/manual_data". | |
| turkish_shrinked_ner can then be loaded using the following command `datasets.load_dataset("turkish_shrinked_ner", data_dir="<path/to/folder>")`. | |
| """ | |
| def _info(self): | |
| return datasets.DatasetInfo( | |
| description=_DESCRIPTION, | |
| features=datasets.Features( | |
| { | |
| "id": datasets.Value("string"), | |
| "tokens": datasets.Sequence(datasets.Value("string")), | |
| "ner_tags": datasets.Sequence( | |
| datasets.features.ClassLabel( | |
| names=[ | |
| "O", | |
| "B-academic", | |
| "I-academic", | |
| "B-academic_person", | |
| "I-academic_person", | |
| "B-aircraft", | |
| "I-aircraft", | |
| "B-album_person", | |
| "I-album_person", | |
| "B-anatomy", | |
| "I-anatomy", | |
| "B-animal", | |
| "I-animal", | |
| "B-architect_person", | |
| "I-architect_person", | |
| "B-capital", | |
| "I-capital", | |
| "B-chemical", | |
| "I-chemical", | |
| "B-clothes", | |
| "I-clothes", | |
| "B-country", | |
| "I-country", | |
| "B-culture", | |
| "I-culture", | |
| "B-currency", | |
| "I-currency", | |
| "B-date", | |
| "I-date", | |
| "B-food", | |
| "I-food", | |
| "B-genre", | |
| "I-genre", | |
| "B-government", | |
| "I-government", | |
| "B-government_person", | |
| "I-government_person", | |
| "B-language", | |
| "I-language", | |
| "B-location", | |
| "I-location", | |
| "B-material", | |
| "I-material", | |
| "B-measure", | |
| "I-measure", | |
| "B-medical", | |
| "I-medical", | |
| "B-military", | |
| "I-military", | |
| "B-military_person", | |
| "I-military_person", | |
| "B-nation", | |
| "I-nation", | |
| "B-newspaper", | |
| "I-newspaper", | |
| "B-organization", | |
| "I-organization", | |
| "B-organization_person", | |
| "I-organization_person", | |
| "B-person", | |
| "I-person", | |
| "B-production_art_music", | |
| "I-production_art_music", | |
| "B-production_art_music_person", | |
| "I-production_art_music_person", | |
| "B-quantity", | |
| "I-quantity", | |
| "B-religion", | |
| "I-religion", | |
| "B-science", | |
| "I-science", | |
| "B-shape", | |
| "I-shape", | |
| "B-ship", | |
| "I-ship", | |
| "B-software", | |
| "I-software", | |
| "B-space", | |
| "I-space", | |
| "B-space_person", | |
| "I-space_person", | |
| "B-sport", | |
| "I-sport", | |
| "B-sport_name", | |
| "I-sport_name", | |
| "B-sport_person", | |
| "I-sport_person", | |
| "B-structure", | |
| "I-structure", | |
| "B-subject", | |
| "I-subject", | |
| "B-tech", | |
| "I-tech", | |
| "B-train", | |
| "I-train", | |
| "B-vehicle", | |
| "I-vehicle", | |
| ] | |
| ) | |
| ), | |
| } | |
| ), | |
| supervised_keys=None, | |
| # Homepage of the dataset for documentation | |
| homepage=_HOMEPAGE, | |
| # License for the dataset if available | |
| license=_LICENSE, | |
| # Citation for the dataset | |
| citation=_CITATION, | |
| ) | |
| def _split_generators(self, dl_manager): | |
| """Returns SplitGenerators.""" | |
| path_to_manual_file = os.path.abspath(os.path.expanduser(dl_manager.manual_dir)) | |
| if not os.path.exists(path_to_manual_file): | |
| raise FileNotFoundError( | |
| "{path_to_manual_file} does not exist. Make sure you insert a manual dir via `datasets.load_dataset('turkish_shrinked_ner', data_dir=...)` that includes file name {_FILENAME}. Manual download instructions: {self.manual_download_instructions}" | |
| ) | |
| return [ | |
| datasets.SplitGenerator( | |
| name=datasets.Split.TRAIN, | |
| # These kwargs will be passed to _generate_examples | |
| gen_kwargs={ | |
| "filepath": os.path.join(path_to_manual_file, "train.txt"), | |
| "split": "train", | |
| }, | |
| ), | |
| ] | |
| def _generate_examples(self, filepath, split): | |
| """Yields examples.""" | |
| logger.info("⏳ Generating examples from = %s", filepath) | |
| with open(filepath, encoding="utf-8") as f: | |
| id_ = 0 | |
| tokens = [] | |
| ner_tags = [] | |
| for row in f: | |
| if row == "": | |
| continue | |
| elif row == "\n": | |
| yield id_, { | |
| "id": str(id_), | |
| "tokens": tokens, | |
| "ner_tags": ner_tags, | |
| } | |
| tokens = [] | |
| ner_tags = [] | |
| id_ += 1 | |
| else: | |
| token, tag = row.split(" ") | |
| tokens.append(token) | |
| ner_tags.append(tag) | |
| if len(tokens) > 0: | |
| yield id_, { | |
| "id": str(id_), | |
| "tokens": tokens, | |
| "ner_tags": ner_tags, | |
| } | |