Datasets:

Modalities:
Tabular
Text
Formats:
csv
Libraries:
Datasets
pandas
License:
File size: 9,696 Bytes
1c02e1f
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
# Copyright 2020 The HuggingFace Datasets Authors and the current dataset script contributor.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
# TODO: Address all TODOs and remove all explanatory comments



import csv
import json
import os
from decimal import Decimal

import datasets

# TODO: citation 
# # Find for instance the citation on arxiv or on the dataset repo/website
# _CITATION = """\
# @InProceedings{huggingface:dataset,
# title = {A great new dataset},
# author={huggingface, Inc.
# },
# year={2020}
# }
# """
_CITATION = ""

# 
_DESCRIPTION = """\

ClueWeb-Reco is a novel zero-shot test set derived from real, \

    consented user browsing sequences, 

    aligning with modern recommendation scenarios while ensuring privacy.

"""

_HOMEPAGE = "https://huggingface.co/datasets/cx-cmu/ClueWeb-Reco"

_LICENSE = "mit"

# The HuggingFace Datasets library doesn't host the datasets but only points to the original files.
# This can be an arbitrary nested dict/list of URLs (see below in `_split_generators` method)
_URLS = {
    "input": "https://huggingface.co/datasets/cx-cmu/ClueWeb-Reco/tree/main/interaction_splits",
    "target": "https://huggingface.co/datasets/cx-cmu/ClueWeb-Reco/tree/main/interaction_splits",
    "mapping": "https://huggingface.co/datasets/cx-cmu/ClueWeb-Reco/tree/main",
}


class ClueWebRecoDataset(datasets.GeneratorBasedBuilder):
    """Process the ClueWeb-Reco zero-shot dataset"""

    VERSION = datasets.Version("1.1.0")

    # This is an example of a dataset with multiple configurations.
    # If you don't want/need to define several sub-sets in your dataset,
    # just remove the BUILDER_CONFIG_CLASS and the BUILDER_CONFIGS attributes.

    # If you need to make complex sub-parts in the datasets with configurable options
    # You can create your own builder configuration class to store attribute, inheriting from datasets.BuilderConfig
    # BUILDER_CONFIG_CLASS = MyBuilderConfig

    # You will be able to load one or the other configurations in the following list with
    # data = datasets.load_dataset('my_dataset', 'first_domain')
    # data = datasets.load_dataset('my_dataset', 'second_domain')
    BUILDER_CONFIGS = [
        datasets.BuilderConfig(name="input", version=VERSION, description="This is the input parts of the dataset"),
        datasets.BuilderConfig(name="target", version=VERSION, description="This is the target parts of the dataset"),
        datasets.BuilderConfig(name="mapping", version=VERSION, description="This is the mapping between official ClueWeb ids and our internal ClueWeb ids"),
    ]

    DEFAULT_CONFIG_NAME = "input"  

    def _info(self):
        if self.config.name == "input":  # This is the name of the configuration selected in BUILDER_CONFIGS above
            features = datasets.Features(
                {
                    "session_id": datasets.Value("string"),
                    "cw_internal_id": datasets.Value("int32"),
                    "timestamp": datasets.Value("string")
                }
            )
        elif self.config.name == "target":
            features = datasets.Features(
                {
                    "session_id": datasets.Value("string"),
                    "target_cw_internal_id": datasets.Value("int32"),
                    "timestamp": datasets.Value("string")
                }
            )
        elif self.config.name == "mapping": 
            features = datasets.Features(
                {
                    "cwid": datasets.Value("string"),
                    "cw_internal_id": datasets.Value("int32"),
                }
            )
        return datasets.DatasetInfo(
            # This is the description that will appear on the datasets page.
            description=_DESCRIPTION,
            # This defines the different columns of the dataset and their types
            features=features,  # Here we define them above because they are different between the two configurations
            # If there's a common (input, target) tuple from the features, uncomment supervised_keys line below and
            # specify them. They'll be used if as_supervised=True in builder.as_dataset.
            # supervised_keys=("sentence", "label"),
            # Homepage of the dataset for documentation
            homepage=_HOMEPAGE,
            # License for the dataset if available
            license=_LICENSE,
            # Citation for the dataset
            citation=_CITATION,
        )

    def _split_generators(self, dl_manager):
        # TODO: This method is tasked with downloading/extracting the data and defining the splits depending on the configuration
        # If several configurations are possible (listed in BUILDER_CONFIGS), the configuration selected by the user is in self.config.name

        # dl_manager is a datasets.download.DownloadManager that can be used to download and extract URLS
        # It can accept any type or nested list/dict and will give back the same structure with the url replaced with path to local files.
        # By default the archives will be extracted and a path to a cached folder where they are extracted is returned instead of the archive
        urls = _URLS[self.config.name]
        data_dir = dl_manager.download_and_extract(urls)
        data_dir = self.config.data_dir 

        if self.config.name == "input": 
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "input_path": os.path.join(data_dir, "interaction_splits/valid_inter_input.tsv"),
                    }
                ),
                datasets.SplitGenerator(
                    name=datasets.Split.TEST,
                    gen_kwargs={
                        "input_path": os.path.join(data_dir, "interaction_splits/test_inter_input.tsv"),
                    },
                ),
            ]
        elif self.config.name == "target": 
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.VALIDATION,
                    gen_kwargs={
                        "target_path": os.path.join(data_dir, "interaction_splits/valid_inter_target.tsv"),
                    },
                ),
            ]

        elif self.config.name == "mapping": 
            return [
                datasets.SplitGenerator(
                    name=datasets.Split.TRAIN,
                    gen_kwargs={
                        "mapping_path": os.path.join(data_dir, "cwid_to_id.tsv"),
                    },
                ),
            ]
    

    def _generate_examples(self, input_path=None, target_path=None, mapping_path=None):
        """

        Generates examples based on the input and (optionally) target files.

        If the configuration is `input`, `target`, or `mapping`, this handles each separately.

        """

        if self.config.name == "input":
            if input_path is None:
                raise ValueError("Input configuration requires an input_path.")
            
            # Process the `input` configuration
            with open(input_path, encoding="utf-8") as f:
                input_lines = f.readlines()[1:]
            for idx, line in enumerate(input_lines):
                session_id, cw_internal_id, timestamp = line.strip().split("\t")
                yield idx, {
                    "session_id": session_id.strip(),
                    "cw_internal_id": int(cw_internal_id.strip()),
                    "timestamp": str(Decimal(timestamp)),
                }
        
        elif self.config.name == "target":
            # if target_path is None:
            #     # Test target is hidden; yield nothing
            #     return
            
            if target_path is None:
                raise ValueError("Target configuration requires an target_path.")
            
            with open(target_path, encoding="utf-8") as f:
                target_lines = f.readlines()[1:]
                for idx, line in enumerate(target_lines):
                    session_id, target_cw_internal_id, timestamp = line.strip().split("\t")
                    yield idx, {
                        "session_id": session_id.strip(),
                        "target_cw_internal_id": int(target_cw_internal_id.strip()),
                        "timestamp": str(Decimal(timestamp)),
                    }

        elif self.config.name == "mapping":

            if mapping_path is None:
                raise ValueError("Mapping configuration requires an mapping_path.")
    
            # Process the `mapping` configuration
            with open(mapping_path, encoding="utf-8") as f:
                for idx, line in enumerate(f):
                    cwid, cw_internal_id = line.strip().split("\t")
                    yield idx, {
                        "cwid": cwid.strip(),
                        "cw_internal_id": int(cw_internal_id.strip()),
                    }