add-meta (#2)
Browse files- Add metadatas for documents and questions (64dc6970f21a86dff1bf70df56212383ca502a33)
- Update README.md (0d95ecc19681e46789bab9744e82e7ed25556e4b)
README.md
CHANGED
|
@@ -11,6 +11,102 @@ source_datasets:
|
|
| 11 |
- extended|allganize/RAG-Evaluation-Dataset-KO
|
| 12 |
task_categories:
|
| 13 |
- other
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
---
|
| 15 |
|
| 16 |
# Dataset Card for Reconstructed RAG Evaluation Dataset (KO)
|
|
@@ -75,7 +171,7 @@ The dataset is in Korean (`ko`).
|
|
| 75 |
* 원본 데이터에서 `allganize/RAG-Evaluation-Dataset-KO`, `documents.csv`와 유사한 구조로 데이터를 로드하는 코드.
|
| 76 |
* 분리된 pdf binary는 병합하여 로컬 경로에 pdf파일로 저장함.
|
| 77 |
|
| 78 |
-
```
|
| 79 |
import os
|
| 80 |
from typing import List
|
| 81 |
from itertools import groupby
|
|
@@ -147,4 +243,9 @@ def load_rag_eval_data(target_pdf_dir:str):
|
|
| 147 |
}
|
| 148 |
|
| 149 |
return qa_df, pdf_meta_dict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 150 |
```
|
|
|
|
| 11 |
- extended|allganize/RAG-Evaluation-Dataset-KO
|
| 12 |
task_categories:
|
| 13 |
- other
|
| 14 |
+
dataset_info:
|
| 15 |
+
- config_name: default
|
| 16 |
+
features:
|
| 17 |
+
- name: __key__
|
| 18 |
+
dtype: string
|
| 19 |
+
- name: __url__
|
| 20 |
+
dtype: string
|
| 21 |
+
- name: json
|
| 22 |
+
struct:
|
| 23 |
+
- name: domain
|
| 24 |
+
dtype: string
|
| 25 |
+
- name: file_name
|
| 26 |
+
dtype: string
|
| 27 |
+
- name: page_number
|
| 28 |
+
dtype: int64
|
| 29 |
+
- name: pages
|
| 30 |
+
dtype: int64
|
| 31 |
+
- name: pid
|
| 32 |
+
dtype: string
|
| 33 |
+
- name: test_cases
|
| 34 |
+
list:
|
| 35 |
+
- name: context_type
|
| 36 |
+
dtype: string
|
| 37 |
+
- name: pid
|
| 38 |
+
dtype: string
|
| 39 |
+
- name: qid
|
| 40 |
+
dtype: string
|
| 41 |
+
- name: question
|
| 42 |
+
dtype: string
|
| 43 |
+
- name: target_answer
|
| 44 |
+
dtype: string
|
| 45 |
+
- name: target_page_no
|
| 46 |
+
dtype: string
|
| 47 |
+
- name: pdf
|
| 48 |
+
dtype: binary
|
| 49 |
+
splits:
|
| 50 |
+
- name: test
|
| 51 |
+
num_bytes: 460216362
|
| 52 |
+
num_examples: 1450
|
| 53 |
+
download_size: 429930358
|
| 54 |
+
dataset_size: 460216362
|
| 55 |
+
- config_name: documents_meta
|
| 56 |
+
features:
|
| 57 |
+
- name: pid
|
| 58 |
+
dtype: string
|
| 59 |
+
- name: domain
|
| 60 |
+
dtype: string
|
| 61 |
+
- name: file_name
|
| 62 |
+
dtype: string
|
| 63 |
+
- name: pages
|
| 64 |
+
dtype: int64
|
| 65 |
+
- name: qid_count
|
| 66 |
+
dtype: int64
|
| 67 |
+
- name: qid_list
|
| 68 |
+
sequence: string
|
| 69 |
+
splits:
|
| 70 |
+
- name: meta
|
| 71 |
+
num_bytes: 9762
|
| 72 |
+
num_examples: 64
|
| 73 |
+
download_size: 8728
|
| 74 |
+
dataset_size: 9762
|
| 75 |
+
- config_name: questions_meta
|
| 76 |
+
features:
|
| 77 |
+
- name: qid
|
| 78 |
+
dtype: string
|
| 79 |
+
- name: question
|
| 80 |
+
dtype: string
|
| 81 |
+
- name: pid
|
| 82 |
+
dtype: string
|
| 83 |
+
- name: file_name
|
| 84 |
+
dtype: string
|
| 85 |
+
- name: target_page_no
|
| 86 |
+
dtype: string
|
| 87 |
+
- name: context_type
|
| 88 |
+
dtype: string
|
| 89 |
+
- name: target_answer
|
| 90 |
+
dtype: string
|
| 91 |
+
splits:
|
| 92 |
+
- name: meta
|
| 93 |
+
num_bytes: 192716
|
| 94 |
+
num_examples: 300
|
| 95 |
+
download_size: 102039
|
| 96 |
+
dataset_size: 192716
|
| 97 |
+
configs:
|
| 98 |
+
- config_name: default
|
| 99 |
+
data_files:
|
| 100 |
+
- split: test
|
| 101 |
+
path: data/test-*
|
| 102 |
+
- config_name: documents_meta
|
| 103 |
+
data_files:
|
| 104 |
+
- split: meta
|
| 105 |
+
path: documents_meta/meta-*
|
| 106 |
+
- config_name: questions_meta
|
| 107 |
+
data_files:
|
| 108 |
+
- split: meta
|
| 109 |
+
path: questions_meta/meta-*
|
| 110 |
---
|
| 111 |
|
| 112 |
# Dataset Card for Reconstructed RAG Evaluation Dataset (KO)
|
|
|
|
| 171 |
* 원본 데이터에서 `allganize/RAG-Evaluation-Dataset-KO`, `documents.csv`와 유사한 구조로 데이터를 로드하는 코드.
|
| 172 |
* 분리된 pdf binary는 병합하여 로컬 경로에 pdf파일로 저장함.
|
| 173 |
|
| 174 |
+
```python
|
| 175 |
import os
|
| 176 |
from typing import List
|
| 177 |
from itertools import groupby
|
|
|
|
| 243 |
}
|
| 244 |
|
| 245 |
return qa_df, pdf_meta_dict
|
| 246 |
+
|
| 247 |
+
|
| 248 |
+
# Load Metadata
|
| 249 |
+
documents_meta = datasets.load_dataset("datalama/RAG-Evaluation-Dataset-KO", name="documents_meta") # 64개 문서에 대한 메타데이터
|
| 250 |
+
questions_meta = datasets.load_dataset("datalama/RAG-Evaluation-Dataset-KO", split="questions_meta") # 300개 질문에 대한 메타데이터
|
| 251 |
```
|
data/test-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:cb1b2cf0110aeab7775a749fb36bd7114d5a3c123286b587542c02f962b9891c
|
| 3 |
+
size 429930358
|
documents_meta/meta-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:14ada05522ef03d62b12f7d9f88683d83bd4fd88c3f983e3947538366d2ce1f4
|
| 3 |
+
size 8728
|
questions_meta/meta-00000-of-00001.parquet
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:95e9a9c53db2276b2c5bd4066b0f5178ef2a62e51785a0a0de439378a10f13b1
|
| 3 |
+
size 102039
|