Datasets:
ecoue
commited on
Commit
·
5dc576d
1
Parent(s):
8f6daea
first iteration of the nordmann2023 dataset on huggingface
Browse files- README.md +52 -0
- build_tokenizer.py +79 -0
- nordmann2023.py +377 -0
- utils.py +341 -0
README.md
ADDED
|
@@ -0,0 +1,52 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
---
|
| 2 |
+
annotations_creators: []
|
| 3 |
+
language:
|
| 4 |
+
- de
|
| 5 |
+
- en
|
| 6 |
+
language_creators: []
|
| 7 |
+
license:
|
| 8 |
+
- unknown
|
| 9 |
+
multilinguality:
|
| 10 |
+
- translation
|
| 11 |
+
pretty_name: nordmann2023
|
| 12 |
+
size_categories:
|
| 13 |
+
- 1M<n<10M
|
| 14 |
+
source_datasets: []
|
| 15 |
+
tags:
|
| 16 |
+
- europarl
|
| 17 |
+
- newscommentary
|
| 18 |
+
- wikititles
|
| 19 |
+
- ecb
|
| 20 |
+
- rapid
|
| 21 |
+
- eesc
|
| 22 |
+
- ema
|
| 23 |
+
- europat
|
| 24 |
+
- books
|
| 25 |
+
- ted2020
|
| 26 |
+
- qed
|
| 27 |
+
- eubookshop
|
| 28 |
+
task_categories:
|
| 29 |
+
- translation
|
| 30 |
+
task_ids: []
|
| 31 |
+
dataset_info:
|
| 32 |
+
features:
|
| 33 |
+
- name: translation
|
| 34 |
+
dtype:
|
| 35 |
+
translation:
|
| 36 |
+
languages:
|
| 37 |
+
- de
|
| 38 |
+
- en
|
| 39 |
+
config_name: balanced
|
| 40 |
+
splits:
|
| 41 |
+
- name: train
|
| 42 |
+
num_bytes: 1539472445
|
| 43 |
+
num_examples: 5656659
|
| 44 |
+
- name: validation
|
| 45 |
+
num_bytes: 706611
|
| 46 |
+
num_examples: 2754
|
| 47 |
+
- name: test
|
| 48 |
+
num_bytes: 411077
|
| 49 |
+
num_examples: 1831
|
| 50 |
+
download_size: 4076594396
|
| 51 |
+
dataset_size: 1540590133
|
| 52 |
+
---
|
build_tokenizer.py
ADDED
|
@@ -0,0 +1,79 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from tokenizers.decoders import WordPiece as WordPieceDecoder
|
| 2 |
+
from tokenizers.pre_tokenizers import BertPreTokenizer
|
| 3 |
+
from tokenizers.normalizers import BertNormalizer
|
| 4 |
+
from tokenizers.trainers import WordPieceTrainer
|
| 5 |
+
from tokenizers.models import WordPiece as WordPieceModel
|
| 6 |
+
from tokenizers import Tokenizer
|
| 7 |
+
import itertools
|
| 8 |
+
|
| 9 |
+
from datasets import load_dataset
|
| 10 |
+
from datasets.utils.logging import set_verbosity_error
|
| 11 |
+
set_verbosity_error()
|
| 12 |
+
|
| 13 |
+
from utils import SampleBatch
|
| 14 |
+
|
| 15 |
+
def unpack_samples(
|
| 16 |
+
batch: SampleBatch
|
| 17 |
+
):
|
| 18 |
+
iterator = (
|
| 19 |
+
sample.values()
|
| 20 |
+
for sample in batch['translation']
|
| 21 |
+
)
|
| 22 |
+
|
| 23 |
+
return list(
|
| 24 |
+
itertools.chain
|
| 25 |
+
.from_iterable(iterator)
|
| 26 |
+
)
|
| 27 |
+
|
| 28 |
+
|
| 29 |
+
def build_tokenizer(
|
| 30 |
+
clean_text: bool = True,
|
| 31 |
+
strip_accents: bool = True,
|
| 32 |
+
lowercase: bool = True
|
| 33 |
+
) -> Tokenizer:
|
| 34 |
+
tokenizer = Tokenizer(
|
| 35 |
+
model=WordPieceModel(
|
| 36 |
+
unk_token='<UNK>'
|
| 37 |
+
)
|
| 38 |
+
)
|
| 39 |
+
tokenizer.normalizer = BertNormalizer(
|
| 40 |
+
clean_text=clean_text,
|
| 41 |
+
handle_chinese_chars=True,
|
| 42 |
+
strip_accents=strip_accents,
|
| 43 |
+
lowercase=lowercase
|
| 44 |
+
)
|
| 45 |
+
tokenizer.pre_tokenizer = BertPreTokenizer()
|
| 46 |
+
tokenizer.decoder = WordPieceDecoder()
|
| 47 |
+
|
| 48 |
+
return tokenizer
|
| 49 |
+
|
| 50 |
+
|
| 51 |
+
train_dset = load_dataset(
|
| 52 |
+
path='nordmann2023',
|
| 53 |
+
name='balanced',
|
| 54 |
+
split='train'
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
tokenizer = build_tokenizer(
|
| 58 |
+
clean_text=True,
|
| 59 |
+
strip_accents=False,
|
| 60 |
+
lowercase=False
|
| 61 |
+
)
|
| 62 |
+
tokenizer.train_from_iterator(
|
| 63 |
+
iterator=(
|
| 64 |
+
unpack_samples(batch)
|
| 65 |
+
for batch in train_dset.iter(
|
| 66 |
+
batch_size=10000
|
| 67 |
+
)
|
| 68 |
+
),
|
| 69 |
+
trainer=WordPieceTrainer(
|
| 70 |
+
vocab_size=40000,
|
| 71 |
+
special_tokens=[
|
| 72 |
+
'<UNK>', '<CLS>', '<SEP>', '<PAD>', '<MASK>'
|
| 73 |
+
]
|
| 74 |
+
),
|
| 75 |
+
length=train_dset.num_rows * 2
|
| 76 |
+
)
|
| 77 |
+
tokenizer.save(
|
| 78 |
+
path='tokenizer.json'
|
| 79 |
+
)
|
nordmann2023.py
ADDED
|
@@ -0,0 +1,377 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Optional, Callable, List, Dict, Any, Tuple, Generator
|
| 2 |
+
from dataclasses import dataclass
|
| 3 |
+
import itertools
|
| 4 |
+
import os
|
| 5 |
+
import datasets
|
| 6 |
+
from .utils import Sample, list_keyby, parse_tmx, parse_sgm, parse_tsv, cleanup, normalize, dict_map, dict_filter_keys, dict_flatten
|
| 7 |
+
|
| 8 |
+
logger = datasets.logging.get_logger(
|
| 9 |
+
name=__name__
|
| 10 |
+
)
|
| 11 |
+
|
| 12 |
+
@dataclass(frozen=True)
|
| 13 |
+
class Candidate:
|
| 14 |
+
name: str
|
| 15 |
+
url: str
|
| 16 |
+
paths: Tuple[str, ...]
|
| 17 |
+
num_examples: int
|
| 18 |
+
parser: Callable[
|
| 19 |
+
[Tuple[str, ...]], Generator[Sample, None, None]
|
| 20 |
+
]
|
| 21 |
+
|
| 22 |
+
def download_paths(
|
| 23 |
+
self,
|
| 24 |
+
base_path: str
|
| 25 |
+
):
|
| 26 |
+
return tuple(
|
| 27 |
+
os.path.join(base_path, path)
|
| 28 |
+
for path in self.paths
|
| 29 |
+
)
|
| 30 |
+
|
| 31 |
+
|
| 32 |
+
@dataclass(frozen=True)
|
| 33 |
+
class Constraint:
|
| 34 |
+
start: Optional[int] = None
|
| 35 |
+
stop: Optional[int] = None
|
| 36 |
+
step: Optional[int] = None
|
| 37 |
+
|
| 38 |
+
|
| 39 |
+
_CANDIDATES = [
|
| 40 |
+
Candidate(
|
| 41 |
+
name='europarl_v10',
|
| 42 |
+
url='https://statmt.org/europarl/v10/training/europarl-v10.de-en.tsv.gz',
|
| 43 |
+
paths=('.',),
|
| 44 |
+
num_examples=1828521,
|
| 45 |
+
parser=lambda filepaths: parse_tsv(
|
| 46 |
+
filepaths=filepaths,
|
| 47 |
+
columns={
|
| 48 |
+
'de': 0, 'en': 1
|
| 49 |
+
}
|
| 50 |
+
)
|
| 51 |
+
),
|
| 52 |
+
Candidate(
|
| 53 |
+
name='newscommentary_v17',
|
| 54 |
+
url='https://www.statmt.org/news-commentary/v17/training/news-commentary-v17.de-en.tsv.gz',
|
| 55 |
+
paths=('.',),
|
| 56 |
+
num_examples=418621,
|
| 57 |
+
parser=lambda filepaths: parse_tsv(
|
| 58 |
+
filepaths=filepaths,
|
| 59 |
+
columns={
|
| 60 |
+
'de': 0, 'en': 1
|
| 61 |
+
}
|
| 62 |
+
)
|
| 63 |
+
),
|
| 64 |
+
Candidate(
|
| 65 |
+
name='wikititles_v3',
|
| 66 |
+
url='https://object.pouta.csc.fi/OPUS-WikiTitles/v3/tmx/de-en.tmx.gz',
|
| 67 |
+
paths=('.',),
|
| 68 |
+
num_examples=1386770,
|
| 69 |
+
parser=lambda filepaths: parse_tmx(
|
| 70 |
+
filepaths=filepaths,
|
| 71 |
+
attributes={
|
| 72 |
+
'de': 'xml:lang="de"', 'en': 'xml:lang="en"',
|
| 73 |
+
}
|
| 74 |
+
)
|
| 75 |
+
),
|
| 76 |
+
Candidate(
|
| 77 |
+
name='ecb_2017',
|
| 78 |
+
url='https://s3-eu-west-1.amazonaws.com/tilde-model/ecb2017.de-en.tmx.zip',
|
| 79 |
+
paths=('ecb2017.UNIQUE.de-en.tmx',),
|
| 80 |
+
num_examples=4147,
|
| 81 |
+
parser=lambda filepaths: parse_tmx(
|
| 82 |
+
filepaths=filepaths,
|
| 83 |
+
attributes={
|
| 84 |
+
'de': 'xml:lang="de"', 'en': 'xml:lang="en"',
|
| 85 |
+
}
|
| 86 |
+
)
|
| 87 |
+
),
|
| 88 |
+
Candidate(
|
| 89 |
+
name='rapid_2019',
|
| 90 |
+
url='https://s3-eu-west-1.amazonaws.com/tilde-model/rapid2019.de-en.tmx.zip',
|
| 91 |
+
paths=('RAPID_2019.UNIQUE.de-en.tmx',),
|
| 92 |
+
num_examples=939808,
|
| 93 |
+
parser=lambda filepaths: parse_tmx(
|
| 94 |
+
filepaths=filepaths,
|
| 95 |
+
attributes={
|
| 96 |
+
'de': 'xml:lang="de"', 'en': 'xml:lang="en"',
|
| 97 |
+
}
|
| 98 |
+
)
|
| 99 |
+
),
|
| 100 |
+
Candidate(
|
| 101 |
+
name='eesc_2017',
|
| 102 |
+
url='https://s3-eu-west-1.amazonaws.com/tilde-model/EESC2017.de-en.tmx.zip',
|
| 103 |
+
paths=('EESC.de-en.tmx',),
|
| 104 |
+
num_examples=2857850,
|
| 105 |
+
parser=lambda filepaths: parse_tmx(
|
| 106 |
+
filepaths=filepaths,
|
| 107 |
+
attributes={
|
| 108 |
+
'de': 'xml:lang="de"', 'en': 'xml:lang="en"',
|
| 109 |
+
}
|
| 110 |
+
)
|
| 111 |
+
),
|
| 112 |
+
Candidate(
|
| 113 |
+
name='ema_2016',
|
| 114 |
+
url='https://s3-eu-west-1.amazonaws.com/tilde-model/EMA2016.de-en.tmx.zip',
|
| 115 |
+
paths=('EMEA2016.de-en.tmx',),
|
| 116 |
+
num_examples=347631,
|
| 117 |
+
parser=lambda filepaths: parse_tmx(
|
| 118 |
+
filepaths=filepaths,
|
| 119 |
+
attributes={
|
| 120 |
+
'de': 'xml:lang="de"', 'en': 'xml:lang="en"',
|
| 121 |
+
}
|
| 122 |
+
)
|
| 123 |
+
),
|
| 124 |
+
Candidate(
|
| 125 |
+
name='europat_v3',
|
| 126 |
+
url='https://web-language-models.s3.amazonaws.com/europat/release3/de-en.txt.gz',
|
| 127 |
+
paths=('.',),
|
| 128 |
+
num_examples=19734742,
|
| 129 |
+
parser=lambda filepaths: parse_tsv(
|
| 130 |
+
filepaths=filepaths,
|
| 131 |
+
columns={
|
| 132 |
+
'de': 0, 'en': 1
|
| 133 |
+
}
|
| 134 |
+
)
|
| 135 |
+
),
|
| 136 |
+
Candidate(
|
| 137 |
+
name='books_v1',
|
| 138 |
+
url='https://object.pouta.csc.fi/OPUS-Books/v1/tmx/de-en.tmx.gz',
|
| 139 |
+
paths=('.',),
|
| 140 |
+
num_examples=51106,
|
| 141 |
+
parser=lambda filepaths: parse_tmx(
|
| 142 |
+
filepaths=filepaths,
|
| 143 |
+
attributes={
|
| 144 |
+
'de': 'xml:lang="de"', 'en': 'xml:lang="en"',
|
| 145 |
+
}
|
| 146 |
+
)
|
| 147 |
+
),
|
| 148 |
+
Candidate(
|
| 149 |
+
name='ted2020_v1',
|
| 150 |
+
url='https://object.pouta.csc.fi/OPUS-TED2020/v1/tmx/de-en.tmx.gz',
|
| 151 |
+
paths=('.',),
|
| 152 |
+
num_examples=289374,
|
| 153 |
+
parser=lambda filepaths: parse_tmx(
|
| 154 |
+
filepaths=filepaths,
|
| 155 |
+
attributes={
|
| 156 |
+
'de': 'xml:lang="de"', 'en': 'xml:lang="en"',
|
| 157 |
+
}
|
| 158 |
+
)
|
| 159 |
+
),
|
| 160 |
+
Candidate(
|
| 161 |
+
name='qed_v2',
|
| 162 |
+
url='https://object.pouta.csc.fi/OPUS-QED/v2.0a/tmx/de-en.tmx.gz',
|
| 163 |
+
paths=('.',),
|
| 164 |
+
num_examples=492811,
|
| 165 |
+
parser=lambda filepaths: parse_tmx(
|
| 166 |
+
filepaths=filepaths,
|
| 167 |
+
attributes={
|
| 168 |
+
'de': 'xml:lang="de"', 'en': 'xml:lang="en"',
|
| 169 |
+
}
|
| 170 |
+
)
|
| 171 |
+
),
|
| 172 |
+
Candidate(
|
| 173 |
+
name='eubookshop_v2',
|
| 174 |
+
url='https://object.pouta.csc.fi/OPUS-EUbookshop/v2/tmx/de-en.tmx.gz',
|
| 175 |
+
paths=('.',),
|
| 176 |
+
num_examples=8312724,
|
| 177 |
+
parser=lambda filepaths: parse_tmx(
|
| 178 |
+
filepaths=filepaths,
|
| 179 |
+
attributes={
|
| 180 |
+
'de': 'xml:lang="de"', 'en': 'xml:lang="en"',
|
| 181 |
+
}
|
| 182 |
+
)
|
| 183 |
+
),
|
| 184 |
+
Candidate(
|
| 185 |
+
name='newstest2018',
|
| 186 |
+
url='https://data.statmt.org/wmt22/translation-task/dev.tgz',
|
| 187 |
+
paths=('dev/sgm/newstest2018-deen-src.de.sgm',
|
| 188 |
+
'dev/sgm/newstest2018-deen-ref.en.sgm'),
|
| 189 |
+
num_examples=2998,
|
| 190 |
+
parser=lambda filepaths: parse_sgm(
|
| 191 |
+
filepaths=filepaths,
|
| 192 |
+
files={
|
| 193 |
+
'de': 0, 'en': 1
|
| 194 |
+
}
|
| 195 |
+
)
|
| 196 |
+
),
|
| 197 |
+
Candidate(
|
| 198 |
+
name='newstest2019',
|
| 199 |
+
url='https://data.statmt.org/wmt22/translation-task/dev.tgz',
|
| 200 |
+
paths=('dev/sgm/newstest2019-deen-src.de.sgm',
|
| 201 |
+
'dev/sgm/newstest2019-deen-ref.en.sgm'),
|
| 202 |
+
num_examples=2000,
|
| 203 |
+
parser=lambda filepaths: parse_sgm(
|
| 204 |
+
filepaths=filepaths,
|
| 205 |
+
files={
|
| 206 |
+
'de': 0, 'en': 1
|
| 207 |
+
}
|
| 208 |
+
)
|
| 209 |
+
)
|
| 210 |
+
]
|
| 211 |
+
|
| 212 |
+
_CANDIDATES_BY_NAME = list_keyby(
|
| 213 |
+
input=_CANDIDATES,
|
| 214 |
+
key_fn=lambda candidate: candidate.name
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
class NordmannConfig(
|
| 219 |
+
datasets.BuilderConfig
|
| 220 |
+
):
|
| 221 |
+
def __init__(
|
| 222 |
+
self,
|
| 223 |
+
splits: Dict[datasets.NamedSplit, List[str]],
|
| 224 |
+
constraints: Dict[str, Constraint],
|
| 225 |
+
normalizer: Callable[[Sample], Sample],
|
| 226 |
+
filter: Callable[[Sample], bool],
|
| 227 |
+
**kwargs: Any
|
| 228 |
+
):
|
| 229 |
+
assert splits
|
| 230 |
+
|
| 231 |
+
datasets.BuilderConfig.__init__(
|
| 232 |
+
self, **kwargs
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
self.splits = dict_map(
|
| 236 |
+
input=splits, map_fn=lambda key, value: (
|
| 237 |
+
key, dict_filter_keys(
|
| 238 |
+
input=_CANDIDATES_BY_NAME, keys=value
|
| 239 |
+
)
|
| 240 |
+
)
|
| 241 |
+
)
|
| 242 |
+
self.constraints = constraints
|
| 243 |
+
self.normalizer = normalizer
|
| 244 |
+
self.filter = filter
|
| 245 |
+
|
| 246 |
+
|
| 247 |
+
class Nordmann(
|
| 248 |
+
datasets.GeneratorBasedBuilder
|
| 249 |
+
):
|
| 250 |
+
BUILDER_CONFIG_CLASS = NordmannConfig
|
| 251 |
+
BUILDER_CONFIGS = [
|
| 252 |
+
NordmannConfig(
|
| 253 |
+
name='balanced',
|
| 254 |
+
description='NORDMANN 2023 (balanced) translation task dataset.',
|
| 255 |
+
version=datasets.Version(
|
| 256 |
+
version_str='0.0.1'
|
| 257 |
+
),
|
| 258 |
+
splits={
|
| 259 |
+
datasets.Split.TRAIN: [
|
| 260 |
+
'europarl_v10',
|
| 261 |
+
'newscommentary_v17',
|
| 262 |
+
'wikititles_v3',
|
| 263 |
+
'europat_v3',
|
| 264 |
+
'books_v1',
|
| 265 |
+
'ted2020_v1',
|
| 266 |
+
'qed_v2',
|
| 267 |
+
'eubookshop_v2'
|
| 268 |
+
],
|
| 269 |
+
datasets.Split.VALIDATION: [
|
| 270 |
+
'newstest2018'
|
| 271 |
+
],
|
| 272 |
+
datasets.Split.TEST: [
|
| 273 |
+
'newstest2019'
|
| 274 |
+
]
|
| 275 |
+
},
|
| 276 |
+
constraints={
|
| 277 |
+
'europat_v3': Constraint(stop=1000000),
|
| 278 |
+
'eubookshop_v2': Constraint(stop=2000000)
|
| 279 |
+
},
|
| 280 |
+
normalizer=normalize(
|
| 281 |
+
strip_whitespaces=True,
|
| 282 |
+
clean_control_characters=True,
|
| 283 |
+
enforce_unicode_form='NFC'
|
| 284 |
+
),
|
| 285 |
+
filter=cleanup(
|
| 286 |
+
length_min=4,
|
| 287 |
+
length_max=4096,
|
| 288 |
+
length_ratio_max=1.33,
|
| 289 |
+
alpha_ratio_min=.5
|
| 290 |
+
)
|
| 291 |
+
)
|
| 292 |
+
]
|
| 293 |
+
|
| 294 |
+
def _info(
|
| 295 |
+
self
|
| 296 |
+
):
|
| 297 |
+
features = {
|
| 298 |
+
'translation': datasets.features.Translation(
|
| 299 |
+
languages=['de', 'en']
|
| 300 |
+
)
|
| 301 |
+
}
|
| 302 |
+
|
| 303 |
+
return datasets.DatasetInfo(
|
| 304 |
+
description='Translation dataset based on statmt.org',
|
| 305 |
+
features=datasets.Features(features)
|
| 306 |
+
)
|
| 307 |
+
|
| 308 |
+
def _split_generators(
|
| 309 |
+
self,
|
| 310 |
+
dl_manager: datasets.DownloadManager
|
| 311 |
+
):
|
| 312 |
+
self.config: NordmannConfig
|
| 313 |
+
|
| 314 |
+
urls = dict_map(
|
| 315 |
+
input=dict_flatten(
|
| 316 |
+
input=self.config.splits
|
| 317 |
+
),
|
| 318 |
+
map_fn=lambda key, value: (
|
| 319 |
+
key, value.url
|
| 320 |
+
)
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
base_paths: Dict[str, str]
|
| 324 |
+
base_paths = dl_manager.download_and_extract(
|
| 325 |
+
url_or_urls=urls
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
generators: List[datasets.SplitGenerator]
|
| 329 |
+
generators = list()
|
| 330 |
+
for split, split_candidates in self.config.splits.items():
|
| 331 |
+
generators.append(
|
| 332 |
+
datasets.SplitGenerator(
|
| 333 |
+
name=str(split),
|
| 334 |
+
gen_kwargs={
|
| 335 |
+
'candidates': split_candidates,
|
| 336 |
+
'base_paths': base_paths
|
| 337 |
+
}
|
| 338 |
+
)
|
| 339 |
+
)
|
| 340 |
+
|
| 341 |
+
return generators
|
| 342 |
+
|
| 343 |
+
def _generate_examples(
|
| 344 |
+
self,
|
| 345 |
+
candidates: Dict[str, Candidate],
|
| 346 |
+
base_paths: Dict[str, str]
|
| 347 |
+
):
|
| 348 |
+
self.config: NordmannConfig
|
| 349 |
+
|
| 350 |
+
for name, candidate in candidates.items():
|
| 351 |
+
constraint = (
|
| 352 |
+
self.config.constraints[name]
|
| 353 |
+
if name in self.config.constraints else Constraint()
|
| 354 |
+
)
|
| 355 |
+
|
| 356 |
+
samples = candidate.parser(
|
| 357 |
+
candidate.download_paths(
|
| 358 |
+
base_path=base_paths[name]
|
| 359 |
+
)
|
| 360 |
+
)
|
| 361 |
+
|
| 362 |
+
for sample_num, sample in enumerate(
|
| 363 |
+
itertools.islice(
|
| 364 |
+
samples,
|
| 365 |
+
constraint.start,
|
| 366 |
+
constraint.stop,
|
| 367 |
+
constraint.step
|
| 368 |
+
)
|
| 369 |
+
):
|
| 370 |
+
normalized_sample = self.config.normalizer(sample)
|
| 371 |
+
|
| 372 |
+
if not self.config.filter(normalized_sample):
|
| 373 |
+
continue
|
| 374 |
+
|
| 375 |
+
yield candidate.name + '_' + str(sample_num), normalized_sample
|
| 376 |
+
|
| 377 |
+
samples.close()
|
utils.py
ADDED
|
@@ -0,0 +1,341 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from typing import Dict, TypeVar, Callable, List, Hashable, Literal, Union, Optional, Tuple, Collection, Iterable
|
| 2 |
+
from xml.etree import ElementTree
|
| 3 |
+
import unicodedata
|
| 4 |
+
from pathlib import Path
|
| 5 |
+
import re
|
| 6 |
+
|
| 7 |
+
Paths = Tuple[str, ...]
|
| 8 |
+
Language = Literal['de', 'en']
|
| 9 |
+
Translation = Dict[
|
| 10 |
+
Language, str
|
| 11 |
+
]
|
| 12 |
+
Sample = Dict[
|
| 13 |
+
Literal['translation'], Translation
|
| 14 |
+
]
|
| 15 |
+
SampleBatch = Dict[
|
| 16 |
+
Literal['translation'], List[Translation]
|
| 17 |
+
]
|
| 18 |
+
|
| 19 |
+
_H1 = TypeVar('_H1', bound=Hashable)
|
| 20 |
+
_H2 = TypeVar('_H2', bound=Hashable)
|
| 21 |
+
_T1 = TypeVar('_T1')
|
| 22 |
+
_T2 = TypeVar('_T2')
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
def dict_filter_keys(
|
| 26 |
+
input: Dict[_H1, _T1],
|
| 27 |
+
keys: List[_H1]
|
| 28 |
+
) -> Dict[_H1, _T1]:
|
| 29 |
+
return dict(
|
| 30 |
+
(key, input[key])
|
| 31 |
+
for key in keys
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
|
| 35 |
+
def dict_flatten(
|
| 36 |
+
input: Dict[_H1, Dict[_H2, _T2]]
|
| 37 |
+
) -> Dict[_H2, _T2]:
|
| 38 |
+
return dict(
|
| 39 |
+
items for values in input.values()
|
| 40 |
+
for items in values.items()
|
| 41 |
+
)
|
| 42 |
+
|
| 43 |
+
|
| 44 |
+
def dict_map(
|
| 45 |
+
input: Dict[_H1, _T1],
|
| 46 |
+
map_fn: Callable[[_H1, _T1], Tuple[_H2, _T2]]
|
| 47 |
+
) -> Dict[_H2, _T2]:
|
| 48 |
+
return dict(
|
| 49 |
+
map_fn(key, value)
|
| 50 |
+
for key, value in input.items()
|
| 51 |
+
)
|
| 52 |
+
|
| 53 |
+
|
| 54 |
+
def list_keyby(
|
| 55 |
+
input: List[_T1],
|
| 56 |
+
key_fn: Callable[[_T1], _H1]
|
| 57 |
+
) -> Dict[_H1, _T1]:
|
| 58 |
+
return dict(
|
| 59 |
+
(key_fn(value), value)
|
| 60 |
+
for value in input
|
| 61 |
+
)
|
| 62 |
+
|
| 63 |
+
|
| 64 |
+
def expand_path(
|
| 65 |
+
path: Path
|
| 66 |
+
):
|
| 67 |
+
if path.is_file():
|
| 68 |
+
return [path]
|
| 69 |
+
|
| 70 |
+
return list(
|
| 71 |
+
path.iterdir()
|
| 72 |
+
)
|
| 73 |
+
|
| 74 |
+
|
| 75 |
+
def lenif(
|
| 76 |
+
input: Collection[_T1],
|
| 77 |
+
predicate_fn: Callable[[_T1], bool]
|
| 78 |
+
):
|
| 79 |
+
return sum(
|
| 80 |
+
predicate_fn(value)
|
| 81 |
+
for value in input
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
def len_alpha(
|
| 86 |
+
string: str
|
| 87 |
+
):
|
| 88 |
+
return lenif(
|
| 89 |
+
input=string,
|
| 90 |
+
predicate_fn=lambda character: character.isalpha()
|
| 91 |
+
)
|
| 92 |
+
|
| 93 |
+
|
| 94 |
+
unicode_control_characters = (
|
| 95 |
+
r'\x00-\x1F\x7F-\x9F\xAD\u0600-\u0605\u061C\u06DD\u070F\u0890-\u0891'
|
| 96 |
+
r'\u08E2\u180E\u200B-\u200F\u202A-\u202E\u2060-\u2064\u2066-\u206F\uFEFF\uFFF9-\uFFFB'
|
| 97 |
+
r'\U000110BD\U000110CD\U00013430-\U0001343F\U0001BCA0-\U0001BCA3\U0001D173-\U0001D17A'
|
| 98 |
+
r'\U000E0001\U000E0020-\U000E007F\uE000\uF8FF\U000F0000\U000FFFFD\U00100000\U0010FFFD'
|
| 99 |
+
)
|
| 100 |
+
|
| 101 |
+
|
| 102 |
+
def normalize(
|
| 103 |
+
strip_whitespaces: bool,
|
| 104 |
+
clean_control_characters: bool,
|
| 105 |
+
enforce_unicode_form: Optional[
|
| 106 |
+
Literal['NFC', 'NFKC', 'NFD', 'NFKD']
|
| 107 |
+
] = None
|
| 108 |
+
):
|
| 109 |
+
regex_pattern = re.compile(
|
| 110 |
+
pattern='[' + unicode_control_characters + ']+'
|
| 111 |
+
)
|
| 112 |
+
|
| 113 |
+
def normalize_fn(
|
| 114 |
+
sample: Sample
|
| 115 |
+
):
|
| 116 |
+
translation = sample['translation']
|
| 117 |
+
|
| 118 |
+
if strip_whitespaces:
|
| 119 |
+
translation = dict_map(
|
| 120 |
+
input=translation,
|
| 121 |
+
map_fn=lambda key, value: (
|
| 122 |
+
key, value.strip()
|
| 123 |
+
)
|
| 124 |
+
)
|
| 125 |
+
|
| 126 |
+
if clean_control_characters:
|
| 127 |
+
translation = dict_map(
|
| 128 |
+
input=translation, map_fn=lambda key, value: (
|
| 129 |
+
key, regex_pattern.sub(
|
| 130 |
+
repl='', string=value
|
| 131 |
+
)
|
| 132 |
+
)
|
| 133 |
+
)
|
| 134 |
+
|
| 135 |
+
if enforce_unicode_form is not None:
|
| 136 |
+
translation = dict_map(
|
| 137 |
+
input=translation, map_fn=lambda key, value: (
|
| 138 |
+
key, unicodedata.normalize(
|
| 139 |
+
enforce_unicode_form, value
|
| 140 |
+
)
|
| 141 |
+
)
|
| 142 |
+
)
|
| 143 |
+
|
| 144 |
+
sample['translation'] = translation
|
| 145 |
+
return sample
|
| 146 |
+
|
| 147 |
+
return normalize_fn
|
| 148 |
+
|
| 149 |
+
|
| 150 |
+
def cleanup(
|
| 151 |
+
length_min: int,
|
| 152 |
+
length_max: int,
|
| 153 |
+
length_ratio_max: Union[int, float],
|
| 154 |
+
alpha_ratio_min: Union[int, float]
|
| 155 |
+
):
|
| 156 |
+
def cleanup_fn(
|
| 157 |
+
sample: Sample
|
| 158 |
+
):
|
| 159 |
+
translation = sample['translation']
|
| 160 |
+
|
| 161 |
+
lenghts = list(
|
| 162 |
+
len(value) for value in translation.values()
|
| 163 |
+
)
|
| 164 |
+
alpha_lengths = list(
|
| 165 |
+
len_alpha(value) for value in translation.values()
|
| 166 |
+
)
|
| 167 |
+
|
| 168 |
+
return all(
|
| 169 |
+
length_min < length < length_max and alpha_ratio_min < alpha_length / length
|
| 170 |
+
for length, alpha_length in zip(lenghts, alpha_lengths)
|
| 171 |
+
) and 1 / length_ratio_max < lenghts[0] / lenghts[1] < length_ratio_max
|
| 172 |
+
|
| 173 |
+
return cleanup_fn
|
| 174 |
+
|
| 175 |
+
|
| 176 |
+
class NoResultFound(Exception):
|
| 177 |
+
pass
|
| 178 |
+
|
| 179 |
+
|
| 180 |
+
class MultipleResultsFound(Exception):
|
| 181 |
+
pass
|
| 182 |
+
|
| 183 |
+
|
| 184 |
+
def one(
|
| 185 |
+
iterable: Iterable[_T1]
|
| 186 |
+
) -> _T1:
|
| 187 |
+
iterator = iter(iterable)
|
| 188 |
+
|
| 189 |
+
try:
|
| 190 |
+
value = next(iterator)
|
| 191 |
+
except StopIteration as e:
|
| 192 |
+
raise NoResultFound from e
|
| 193 |
+
|
| 194 |
+
try:
|
| 195 |
+
next(iterator)
|
| 196 |
+
except StopIteration:
|
| 197 |
+
pass
|
| 198 |
+
else:
|
| 199 |
+
raise MultipleResultsFound
|
| 200 |
+
|
| 201 |
+
return value
|
| 202 |
+
|
| 203 |
+
|
| 204 |
+
def match_one(
|
| 205 |
+
pattern: Union[str, re.Pattern[str]],
|
| 206 |
+
string: str,
|
| 207 |
+
flags: int = 0
|
| 208 |
+
):
|
| 209 |
+
return one(
|
| 210 |
+
iterable=re.finditer(
|
| 211 |
+
pattern=pattern,
|
| 212 |
+
string=string,
|
| 213 |
+
flags=flags
|
| 214 |
+
)
|
| 215 |
+
)
|
| 216 |
+
|
| 217 |
+
|
| 218 |
+
def parse_sgm(
|
| 219 |
+
filepaths: Paths,
|
| 220 |
+
files: Dict[Language, int],
|
| 221 |
+
encoding: str = 'utf-8'
|
| 222 |
+
):
|
| 223 |
+
assert len(filepaths) == 2
|
| 224 |
+
|
| 225 |
+
def read_lines_regex(
|
| 226 |
+
filepath: str,
|
| 227 |
+
pattern: re.Pattern[str]
|
| 228 |
+
):
|
| 229 |
+
with open(
|
| 230 |
+
file=filepath,
|
| 231 |
+
encoding=encoding,
|
| 232 |
+
mode='r'
|
| 233 |
+
) as file:
|
| 234 |
+
for string in file:
|
| 235 |
+
try:
|
| 236 |
+
match = match_one(
|
| 237 |
+
pattern=pattern,
|
| 238 |
+
string=string
|
| 239 |
+
)
|
| 240 |
+
groups = match.groups(
|
| 241 |
+
default=''
|
| 242 |
+
)
|
| 243 |
+
yield groups[0]
|
| 244 |
+
except:
|
| 245 |
+
yield ''
|
| 246 |
+
|
| 247 |
+
regex = re.compile(
|
| 248 |
+
pattern=r'<seg id="\d+">(.*)</seg>'
|
| 249 |
+
)
|
| 250 |
+
|
| 251 |
+
for lines in zip(
|
| 252 |
+
read_lines_regex(
|
| 253 |
+
filepath=filepaths[0],
|
| 254 |
+
pattern=regex
|
| 255 |
+
),
|
| 256 |
+
read_lines_regex(
|
| 257 |
+
filepath=filepaths[1],
|
| 258 |
+
pattern=regex
|
| 259 |
+
)
|
| 260 |
+
):
|
| 261 |
+
translation: Translation
|
| 262 |
+
translation = dict(
|
| 263 |
+
(language, lines[index])
|
| 264 |
+
for language, index in files.items()
|
| 265 |
+
)
|
| 266 |
+
|
| 267 |
+
sample: Sample = dict()
|
| 268 |
+
sample['translation'] = translation
|
| 269 |
+
yield sample
|
| 270 |
+
|
| 271 |
+
|
| 272 |
+
def parse_tsv(
|
| 273 |
+
filepaths: Paths,
|
| 274 |
+
columns: Dict[Language, int],
|
| 275 |
+
encoding: str = 'utf-8'
|
| 276 |
+
):
|
| 277 |
+
assert len(filepaths) == 1
|
| 278 |
+
|
| 279 |
+
len_columns = len(columns)
|
| 280 |
+
|
| 281 |
+
with open(
|
| 282 |
+
file=filepaths[0],
|
| 283 |
+
encoding=encoding,
|
| 284 |
+
mode='r'
|
| 285 |
+
) as file:
|
| 286 |
+
for line in file:
|
| 287 |
+
parts = line.split('\t')
|
| 288 |
+
|
| 289 |
+
if len(parts) < len_columns:
|
| 290 |
+
continue
|
| 291 |
+
|
| 292 |
+
translation: Translation = dict()
|
| 293 |
+
for language, index in columns.items():
|
| 294 |
+
translation[language] = parts[index]
|
| 295 |
+
|
| 296 |
+
sample: Sample = dict()
|
| 297 |
+
sample['translation'] = translation
|
| 298 |
+
yield sample
|
| 299 |
+
|
| 300 |
+
|
| 301 |
+
def parse_tmx(
|
| 302 |
+
filepaths: Paths,
|
| 303 |
+
attributes: Dict[Language, str],
|
| 304 |
+
encoding: str = 'utf-8',
|
| 305 |
+
):
|
| 306 |
+
assert len(filepaths) == 1
|
| 307 |
+
|
| 308 |
+
element: ElementTree.Element
|
| 309 |
+
namespaces = {
|
| 310 |
+
'xml': 'http://www.w3.org/XML/1998/namespace'
|
| 311 |
+
}
|
| 312 |
+
|
| 313 |
+
with open(
|
| 314 |
+
file=filepaths[0],
|
| 315 |
+
encoding=encoding,
|
| 316 |
+
mode='r'
|
| 317 |
+
) as file:
|
| 318 |
+
for _, element in ElementTree.iterparse(file):
|
| 319 |
+
if not element.tag == 'tu':
|
| 320 |
+
continue
|
| 321 |
+
|
| 322 |
+
translation: Translation = dict()
|
| 323 |
+
for language, selector in attributes.items():
|
| 324 |
+
path = 'tuv[@' + selector + ']'
|
| 325 |
+
|
| 326 |
+
segs = element.findall(
|
| 327 |
+
path=path + '/seg', namespaces=namespaces
|
| 328 |
+
)
|
| 329 |
+
if not len(segs) == 1:
|
| 330 |
+
continue
|
| 331 |
+
|
| 332 |
+
translation[language] = segs[0].text or ''
|
| 333 |
+
|
| 334 |
+
element.clear()
|
| 335 |
+
|
| 336 |
+
if not len(translation) == 2:
|
| 337 |
+
continue
|
| 338 |
+
|
| 339 |
+
sample: Sample = dict()
|
| 340 |
+
sample['translation'] = translation
|
| 341 |
+
yield sample
|