Commit
·
050702c
1
Parent(s):
964d89f
Delete utils/generate_ds.ipynb
Browse files- utils/generate_ds.ipynb +0 -327
utils/generate_ds.ipynb
DELETED
|
@@ -1,327 +0,0 @@
|
|
| 1 |
-
{
|
| 2 |
-
"cells": [
|
| 3 |
-
{
|
| 4 |
-
"cell_type": "code",
|
| 5 |
-
"execution_count": 1,
|
| 6 |
-
"metadata": {},
|
| 7 |
-
"outputs": [],
|
| 8 |
-
"source": [
|
| 9 |
-
"from datasets import load_dataset"
|
| 10 |
-
]
|
| 11 |
-
},
|
| 12 |
-
{
|
| 13 |
-
"cell_type": "code",
|
| 14 |
-
"execution_count": 2,
|
| 15 |
-
"metadata": {},
|
| 16 |
-
"outputs": [],
|
| 17 |
-
"source": [
|
| 18 |
-
"data_files = {\n",
|
| 19 |
-
" \"train\": \"./train.txt\",\n",
|
| 20 |
-
" \"val\": \"./val.txt\",\n",
|
| 21 |
-
" \"test\": \"./test.txt\",\n",
|
| 22 |
-
"}\n",
|
| 23 |
-
"ds = load_dataset(\"text\", data_files=data_files)"
|
| 24 |
-
]
|
| 25 |
-
},
|
| 26 |
-
{
|
| 27 |
-
"cell_type": "code",
|
| 28 |
-
"execution_count": 3,
|
| 29 |
-
"metadata": {},
|
| 30 |
-
"outputs": [],
|
| 31 |
-
"source": [
|
| 32 |
-
"ds['train'] = ds['train'].rename_column('text', 'SMILE')\n",
|
| 33 |
-
"ds['val'] = ds['val'].rename_column('text', 'SMILE')\n",
|
| 34 |
-
"ds['test'] = ds['test'].rename_column('text', 'SMILE')"
|
| 35 |
-
]
|
| 36 |
-
},
|
| 37 |
-
{
|
| 38 |
-
"cell_type": "code",
|
| 39 |
-
"execution_count": 4,
|
| 40 |
-
"metadata": {},
|
| 41 |
-
"outputs": [],
|
| 42 |
-
"source": [
|
| 43 |
-
"import selfies as sf\n",
|
| 44 |
-
"\n",
|
| 45 |
-
"def try_convert(row):\n",
|
| 46 |
-
" selfie = None\n",
|
| 47 |
-
" try:\n",
|
| 48 |
-
" selfie = sf.encoder(row['SMILE'])\n",
|
| 49 |
-
" except:\n",
|
| 50 |
-
" pass\n",
|
| 51 |
-
"\n",
|
| 52 |
-
" return {'SELFIE': selfie}\n",
|
| 53 |
-
"\n",
|
| 54 |
-
"# Alongside the SMILES, we also need to convert them to SELFIES\n",
|
| 55 |
-
"# ds['train'] = ds['train'].add_column('SELFIE', ds['train'].map(try_convert, num_proc=8))"
|
| 56 |
-
]
|
| 57 |
-
},
|
| 58 |
-
{
|
| 59 |
-
"cell_type": "code",
|
| 60 |
-
"execution_count": 5,
|
| 61 |
-
"metadata": {},
|
| 62 |
-
"outputs": [],
|
| 63 |
-
"source": [
|
| 64 |
-
"ds['train'] = ds['train'].map(try_convert, num_proc=8)\n",
|
| 65 |
-
"ds['val'] = ds['val'].map(try_convert, num_proc=8)\n",
|
| 66 |
-
"ds['test'] = ds['test'].map(try_convert, num_proc=8)"
|
| 67 |
-
]
|
| 68 |
-
},
|
| 69 |
-
{
|
| 70 |
-
"cell_type": "code",
|
| 71 |
-
"execution_count": 6,
|
| 72 |
-
"metadata": {},
|
| 73 |
-
"outputs": [],
|
| 74 |
-
"source": [
|
| 75 |
-
"# Drop the rows where the conversion failed\n",
|
| 76 |
-
"ds['train'] = ds['train'].filter(lambda row: row['SELFIE'] is not None)\n",
|
| 77 |
-
"ds['val'] = ds['val'].filter(lambda row: row['SELFIE'] is not None)\n",
|
| 78 |
-
"ds['test'] = ds['test'].filter(lambda row: row['SELFIE'] is not None)"
|
| 79 |
-
]
|
| 80 |
-
},
|
| 81 |
-
{
|
| 82 |
-
"cell_type": "code",
|
| 83 |
-
"execution_count": 21,
|
| 84 |
-
"metadata": {},
|
| 85 |
-
"outputs": [],
|
| 86 |
-
"source": [
|
| 87 |
-
"from tokenizers import Tokenizer\n",
|
| 88 |
-
"\n",
|
| 89 |
-
"tokenizer = Tokenizer.from_pretrained(\"haydn-jones/GuacamolSELFIETokenizer\")"
|
| 90 |
-
]
|
| 91 |
-
},
|
| 92 |
-
{
|
| 93 |
-
"cell_type": "code",
|
| 94 |
-
"execution_count": 22,
|
| 95 |
-
"metadata": {},
|
| 96 |
-
"outputs": [
|
| 97 |
-
{
|
| 98 |
-
"data": {
|
| 99 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 100 |
-
"model_id": "0ebfc58c2d8a46419df052346f288eff",
|
| 101 |
-
"version_major": 2,
|
| 102 |
-
"version_minor": 0
|
| 103 |
-
},
|
| 104 |
-
"text/plain": [
|
| 105 |
-
"Filter (num_proc=8): 0%| | 0/1273077 [00:00<?, ? examples/s]"
|
| 106 |
-
]
|
| 107 |
-
},
|
| 108 |
-
"metadata": {},
|
| 109 |
-
"output_type": "display_data"
|
| 110 |
-
},
|
| 111 |
-
{
|
| 112 |
-
"data": {
|
| 113 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 114 |
-
"model_id": "af4f73ef62ad40a7992a6f99887eaa1a",
|
| 115 |
-
"version_major": 2,
|
| 116 |
-
"version_minor": 0
|
| 117 |
-
},
|
| 118 |
-
"text/plain": [
|
| 119 |
-
"Filter (num_proc=8): 0%| | 0/79567 [00:00<?, ? examples/s]"
|
| 120 |
-
]
|
| 121 |
-
},
|
| 122 |
-
"metadata": {},
|
| 123 |
-
"output_type": "display_data"
|
| 124 |
-
},
|
| 125 |
-
{
|
| 126 |
-
"data": {
|
| 127 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 128 |
-
"model_id": "b49b45c72f3d445abf74c3694979a34b",
|
| 129 |
-
"version_major": 2,
|
| 130 |
-
"version_minor": 0
|
| 131 |
-
},
|
| 132 |
-
"text/plain": [
|
| 133 |
-
"Filter (num_proc=8): 0%| | 0/238698 [00:00<?, ? examples/s]"
|
| 134 |
-
]
|
| 135 |
-
},
|
| 136 |
-
"metadata": {},
|
| 137 |
-
"output_type": "display_data"
|
| 138 |
-
}
|
| 139 |
-
],
|
| 140 |
-
"source": [
|
| 141 |
-
"unk_id = tokenizer.token_to_id('<UNK>')\n",
|
| 142 |
-
"\n",
|
| 143 |
-
"# Drop any rows where the tokenization has an <UNK> token\n",
|
| 144 |
-
"ds['train'] = ds['train'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)\n",
|
| 145 |
-
"ds['val'] = ds['val'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)\n",
|
| 146 |
-
"ds['test'] = ds['test'].filter(lambda row: unk_id not in tokenizer.encode(row['SELFIE']).ids, num_proc=8)"
|
| 147 |
-
]
|
| 148 |
-
},
|
| 149 |
-
{
|
| 150 |
-
"cell_type": "code",
|
| 151 |
-
"execution_count": 24,
|
| 152 |
-
"metadata": {},
|
| 153 |
-
"outputs": [
|
| 154 |
-
{
|
| 155 |
-
"data": {
|
| 156 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 157 |
-
"model_id": "168a1aa5665f47529aea44c5f2bbbf9f",
|
| 158 |
-
"version_major": 2,
|
| 159 |
-
"version_minor": 0
|
| 160 |
-
},
|
| 161 |
-
"text/plain": [
|
| 162 |
-
"Saving the dataset (0/1 shards): 0%| | 0/1273077 [00:00<?, ? examples/s]"
|
| 163 |
-
]
|
| 164 |
-
},
|
| 165 |
-
"metadata": {},
|
| 166 |
-
"output_type": "display_data"
|
| 167 |
-
},
|
| 168 |
-
{
|
| 169 |
-
"data": {
|
| 170 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 171 |
-
"model_id": "bb77c4370aee45ec9a3cb614d1b21b93",
|
| 172 |
-
"version_major": 2,
|
| 173 |
-
"version_minor": 0
|
| 174 |
-
},
|
| 175 |
-
"text/plain": [
|
| 176 |
-
"Saving the dataset (0/1 shards): 0%| | 0/79564 [00:00<?, ? examples/s]"
|
| 177 |
-
]
|
| 178 |
-
},
|
| 179 |
-
"metadata": {},
|
| 180 |
-
"output_type": "display_data"
|
| 181 |
-
},
|
| 182 |
-
{
|
| 183 |
-
"data": {
|
| 184 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 185 |
-
"model_id": "d966547c0f8847e5aff55fbb117a33d9",
|
| 186 |
-
"version_major": 2,
|
| 187 |
-
"version_minor": 0
|
| 188 |
-
},
|
| 189 |
-
"text/plain": [
|
| 190 |
-
"Saving the dataset (0/1 shards): 0%| | 0/238694 [00:00<?, ? examples/s]"
|
| 191 |
-
]
|
| 192 |
-
},
|
| 193 |
-
"metadata": {},
|
| 194 |
-
"output_type": "display_data"
|
| 195 |
-
}
|
| 196 |
-
],
|
| 197 |
-
"source": [
|
| 198 |
-
"ds.save_to_disk('./guacamol')"
|
| 199 |
-
]
|
| 200 |
-
},
|
| 201 |
-
{
|
| 202 |
-
"cell_type": "code",
|
| 203 |
-
"execution_count": 26,
|
| 204 |
-
"metadata": {},
|
| 205 |
-
"outputs": [
|
| 206 |
-
{
|
| 207 |
-
"data": {
|
| 208 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 209 |
-
"model_id": "e52e2a9926b94dec81514575a0600a39",
|
| 210 |
-
"version_major": 2,
|
| 211 |
-
"version_minor": 0
|
| 212 |
-
},
|
| 213 |
-
"text/plain": [
|
| 214 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
| 215 |
-
]
|
| 216 |
-
},
|
| 217 |
-
"metadata": {},
|
| 218 |
-
"output_type": "display_data"
|
| 219 |
-
},
|
| 220 |
-
{
|
| 221 |
-
"data": {
|
| 222 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 223 |
-
"model_id": "c65e4593a4d4434eb5017997844ff50d",
|
| 224 |
-
"version_major": 2,
|
| 225 |
-
"version_minor": 0
|
| 226 |
-
},
|
| 227 |
-
"text/plain": [
|
| 228 |
-
"Creating parquet from Arrow format: 0%| | 0/1274 [00:00<?, ?ba/s]"
|
| 229 |
-
]
|
| 230 |
-
},
|
| 231 |
-
"metadata": {},
|
| 232 |
-
"output_type": "display_data"
|
| 233 |
-
},
|
| 234 |
-
{
|
| 235 |
-
"data": {
|
| 236 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 237 |
-
"model_id": "336e610ebd324b34a793c7f373f24769",
|
| 238 |
-
"version_major": 2,
|
| 239 |
-
"version_minor": 0
|
| 240 |
-
},
|
| 241 |
-
"text/plain": [
|
| 242 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
| 243 |
-
]
|
| 244 |
-
},
|
| 245 |
-
"metadata": {},
|
| 246 |
-
"output_type": "display_data"
|
| 247 |
-
},
|
| 248 |
-
{
|
| 249 |
-
"data": {
|
| 250 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 251 |
-
"model_id": "0b5bc569aa7c4a9c880899f6728a9d88",
|
| 252 |
-
"version_major": 2,
|
| 253 |
-
"version_minor": 0
|
| 254 |
-
},
|
| 255 |
-
"text/plain": [
|
| 256 |
-
"Creating parquet from Arrow format: 0%| | 0/80 [00:00<?, ?ba/s]"
|
| 257 |
-
]
|
| 258 |
-
},
|
| 259 |
-
"metadata": {},
|
| 260 |
-
"output_type": "display_data"
|
| 261 |
-
},
|
| 262 |
-
{
|
| 263 |
-
"data": {
|
| 264 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 265 |
-
"model_id": "2028affe9f43476caf7e785417329a65",
|
| 266 |
-
"version_major": 2,
|
| 267 |
-
"version_minor": 0
|
| 268 |
-
},
|
| 269 |
-
"text/plain": [
|
| 270 |
-
"Uploading the dataset shards: 0%| | 0/1 [00:00<?, ?it/s]"
|
| 271 |
-
]
|
| 272 |
-
},
|
| 273 |
-
"metadata": {},
|
| 274 |
-
"output_type": "display_data"
|
| 275 |
-
},
|
| 276 |
-
{
|
| 277 |
-
"data": {
|
| 278 |
-
"application/vnd.jupyter.widget-view+json": {
|
| 279 |
-
"model_id": "f3eedbe390574443b69528830d8039af",
|
| 280 |
-
"version_major": 2,
|
| 281 |
-
"version_minor": 0
|
| 282 |
-
},
|
| 283 |
-
"text/plain": [
|
| 284 |
-
"Creating parquet from Arrow format: 0%| | 0/239 [00:00<?, ?ba/s]"
|
| 285 |
-
]
|
| 286 |
-
},
|
| 287 |
-
"metadata": {},
|
| 288 |
-
"output_type": "display_data"
|
| 289 |
-
}
|
| 290 |
-
],
|
| 291 |
-
"source": [
|
| 292 |
-
"repo_id = \"haydn-jones/Guacamol\"\n",
|
| 293 |
-
"\n",
|
| 294 |
-
"# Push the dataset to the repo\n",
|
| 295 |
-
"ds.push_to_hub(repo_id, token=\"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\")"
|
| 296 |
-
]
|
| 297 |
-
},
|
| 298 |
-
{
|
| 299 |
-
"cell_type": "code",
|
| 300 |
-
"execution_count": null,
|
| 301 |
-
"metadata": {},
|
| 302 |
-
"outputs": [],
|
| 303 |
-
"source": []
|
| 304 |
-
}
|
| 305 |
-
],
|
| 306 |
-
"metadata": {
|
| 307 |
-
"kernelspec": {
|
| 308 |
-
"display_name": "ddpm",
|
| 309 |
-
"language": "python",
|
| 310 |
-
"name": "python3"
|
| 311 |
-
},
|
| 312 |
-
"language_info": {
|
| 313 |
-
"codemirror_mode": {
|
| 314 |
-
"name": "ipython",
|
| 315 |
-
"version": 3
|
| 316 |
-
},
|
| 317 |
-
"file_extension": ".py",
|
| 318 |
-
"mimetype": "text/x-python",
|
| 319 |
-
"name": "python",
|
| 320 |
-
"nbconvert_exporter": "python",
|
| 321 |
-
"pygments_lexer": "ipython3",
|
| 322 |
-
"version": "3.11.6"
|
| 323 |
-
}
|
| 324 |
-
},
|
| 325 |
-
"nbformat": 4,
|
| 326 |
-
"nbformat_minor": 2
|
| 327 |
-
}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|