--- dataset_name: transformers_code_embeddings license: apache-2.0 language: code tags: - embeddings - transformers-internal - similarity-search --- # Transformers Code Embeddings Compact index of function/class definitions from `src/transformers/models/**/modeling_*.py` for cross-model similarity. Built to help surface reusable code when modularizing models. ## Contents - `embeddings.safetensors` — float32, L2-normalized embeddings shaped `[N, D]`. - `code_index_map.json` — `{int_id: "relative/path/to/modeling_*.py:SymbolName"}`. - `code_index_tokens.json` — `{identifier: [sorted_unique_tokens]}` for Jaccard. ## How these were built - Source: 🤗 Transformers repository, under `src/transformers/models`. - Units: top-level `class`/`def` definitions. - Preprocessing: - Strip docstrings, comments, and import lines. - Replace occurrences of model names and symbol prefixes with `Model`. - Encoder: `Qwen/Qwen3-Embedding-4B` via `transformers` (mean pooling over tokens, then L2 normalize). - Output dtype: float32. > Note: Results are tied to a specific Transformers commit. Regenerate when the repo changes. ## Quick usage ```python from huggingface_hub import hf_hub_download from safetensors.numpy import load_file import json, numpy as np repo_id = "hf-internal-testing/transformers_code_embeddings" emb_path = hf_hub_download(repo_id, "embeddings.safetensors", repo_type="dataset") map_path = hf_hub_download(repo_id, "code_index_map.json", repo_type="dataset") tok_path = hf_hub_download(repo_id, "code_index_tokens.json", repo_type="dataset") emb = load_file(emb_path)["embeddings"] # (N, D) float32, L2-normalized id_map = {int(k): v for k, v in json.load(open(map_path))} tokens = json.load(open(tok_path)) # cosine similarity: dot product def topk(vec, k=10): sims = vec @ emb.T idx = np.argpartition(-sims, k)[:k] idx = idx[np.argsort(-sims[idx])] return [(id_map[int(i)], float(sims[i])) for i in idx] ```` ## Intended use * Identify similar symbols across models (embedding + Jaccard over tokens). * Assist refactors and modularization efforts. ## Limitations * Embeddings reflect preprocessing choices and the specific encoder. * Symbols from the same file are present; filter by model name if needed. ## Repro/build See `utils/modular_model_detector.py` in `transformers` repo for exact build & push commands. ## License Apache-2.0 for this dataset card and produced artifacts. Source code remains under its original license in the upstream repo. ```