--- dataset_info: features: - name: repo_name dtype: string - name: language dtype: string - name: created_at dtype: string - name: description dtype: string - name: description_language dtype: string - name: description_language_score dtype: float64 - name: license_key dtype: string - name: forks_count dtype: float64 - name: watchers_count dtype: float64 - name: size dtype: float64 - name: last_pr_id dtype: int64 splits: - name: full num_bytes: 5567563250 num_examples: 40058194 - name: sample num_bytes: 138717361 num_examples: 1000000 download_size: 2298358914 dataset_size: 5706280611 configs: - config_name: default data_files: - split: full path: data/full-* - split: sample path: data/sample-* license: mit tags: - code size_categories: - 10M Source: [GH Archive](https://www.gharchive.org/) (public GitHub event stream). ## 🚀 Quickstart ```python from datasets import load_dataset ds = load_dataset("ibragim-bad/github-repos-metadata-40M", split="full") # or 'sample' for random sample of 1 million repositories. ``` ## 📈 EDA Notebook - `data_visualisation.ipynb`: Simple exploratory data analysis of the dataset (column overview, basic distributions, missing-value checks, sample visualizations). ## 💡 Use cases * Trend analysis of stars/forks/PRs * Language mix & repo growth signals * Ranking by activity / stability * Input features for ML models (quality or popularity prediction) ## 📦 What’s inside Each row aggregates repository-level stats derived from GH Archive events and GitHub metadata snapshots. **Schema (columns & types)** | Column | Type | Description | | ------------------- | -------------- | --------------------------------------------------------------------------- | | `repo_name` | `string` | `owner/name` | | `language` | `string` | Primary language (human-readable) | | `created_at` | `timestamp` | Repo creation time (UTC) if available | | `description` | `string` | Repo description | | `description_language` | `string` | Detected natural-language code of the repository description (ISO 639-1/2) | | `description_language_score` | `float32` | Confidence score for description_language (0–1) | | `license_key` | `string` | SPDX-like license key | | `forks_count` | `int64` | Current forks count | | `watchers_count` | `int64` | Watchers/stars count (note: GitHub’s legacy “watchers” vs “stargazers”) | | `size` | `int64` | Repo size (KB, as reported by GitHub) | | `last_pr_id` | `int64` | Latest available PR id | Values may be `null` when unavailable from the source. ## 🏗️ How it’s built (ETL) - **Data source:** GH Archive public event stream; window through 2025-07-23 (UTC). - **Event filter:** - CreateEvent (ref_type=repository) to capture initial repo creation and timestamps. - PullRequestEvent to obtain rich repo snapshots embedded in PR payloads. - **Extraction:** - Parse event.repo and payload.*.repo snapshots for: repo_name (owner/name), description, language, license_key, size, visibility, created_at, open_issues_count, forks_count, watchers_count. - Track latest observed PR identifier as last_pr_id. - **Aggregation:** - Group by repo_name; keep the most recent snapshot within the window. **Notes** - Coverage primarily comes from PullRequestEvent snapshots; repositories without any PRs are generally missing. - Stars/watchers and forks are taken from event-time snapshots and may be slightly stale versus live GitHub. - Values can be null if not present in the underlying event payloads. ## ⚠️ Limitations * GH Archive reflects **public** events only; private repos are out of scope. * Some GitHub fields (e.g., watchers vs stargazers) have historical quirks. * Missing values where source is unavailable. ## 📚 Citation If you use this dataset, please cite: ```bibtex @misc{github_repos_activity_stats_2025, title = {GitHub Repos Activity Stats (from GH Archive)}, author = {Ibragim Badertdinov}, year = {2025}, howpublished = {\url{https://huggingface.co/datasets/ibraigm-bad/github-repos-metadata-40M}} } ``` ## 📜 License Distributed under the MIT License. See LICENSE for more information.