--- name: "FER2025" tags: ["facial-emotion", "FER", "emotion-recognition", "deep-learning"] license: "cc-by-nc-4.0" --- # FER2025 – Facial Expression Recognition Dataset [![License: Research Use Only](https://img.shields.io/badge/License-Research%20Use%20Only-lightgrey.svg)](#license--attribution) [![Total Images](https://img.shields.io/badge/Total%20Images-1.59M-blue)](#overview) [![Classes](https://img.shields.io/badge/Classes-7-green)](#overview) --- ## Overview **FER2025** is a **large-scale, balanced facial emotion dataset** designed for **deep learning and computer vision research**. It contains **1,589,810 images** across **7 emotion classes**: | Class | Images | |------------|---------| | Angry | 224,624 | | Disgust | 239,366 | | Fear | 223,466 | | Happy | 222,082 | | Neutral | 234,230 | | Sad | 217,884 | | Surprise | 228,158 | **Image formats:** jpg, jpeg, png **Balanced:** Maximum class difference ≈ 1.3% FER2025 is suitable for **feature extraction, model training, and benchmarking**and**Training deep learning model**. --- ## Dataset Structure FER2025/ ➡️ Angry.tar | Disgust.tar | Fear.tar | Happy.tar | Neutral.tar | Sad.tar | Surprise.tar Each TAR contains **images + corresponding `.cls` label files** for efficient streaming. --- ## Recommended Usage - **Feature Extraction:** ResNet, EfficientNet, ViT embeddings - **Training & Evaluation:** Balanced classes remove need for oversampling or class weighting - **Large-Scale Training:** Use TAR/WebDataset format for GPU-efficient streaming --- ## Example: Loading FER2025 with PyTorch + WebDataset ```python import webdataset as wds from torchvision import transforms import torch transform = transforms.Compose([ transforms.Resize((224,224)), transforms.ToTensor(), ]) dataset = ( wds.WebDataset("FER2025/{Angry,Disgust,Fear,Happy,Neutral,Sad,Surprise}.tar") .decode("pil") .to_tuple("jpg", "cls") .map_tuple(transform, int) ) loader = torch.utils.data.DataLoader(dataset, batch_size=64, num_workers=4, shuffle=True) for images, labels in loader: print(images.shape, labels.shape) break ``` --- ## License & Ethical Use **License:** CC BY-NC 4.0 – Attribution required, non-commercial use **Ethical Use:** Images are sourced from publicly available data for research. Users must respect privacy and avoid commercial misuse. --- ## Citations @dataset {FER2025, author = {Adhavan M}, title = {FER2025: Large-Scale Balanced Facial Expression Dataset}, year = {2025}, url = https://huggingface.co/datasets/imadhavan/FER2025 }