iqtree2 / data /obsolete /guidedbootstrap.cpp
introvoyz041's picture
Migrated from GitHub
e084fac verified
/***************************************************************************
* Copyright (C) 2009 by BUI Quang Minh *
* [email protected] *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifdef HAVE_CONFIG_H
#include <config.h>
#endif
#include <numeric>
#include "phylotree.h"
#include "phylosupertree.h"
#include "phyloanalysis.h"
#include "alignment.h"
#include "superalignment.h"
#include "iqtree.h"
#include "model/modelmarkov.h"
#include "model/modeldna.h"
#include "myreader.h"
#include "model/rateheterogeneity.h"
#include "model/rategamma.h"
#include "model/rateinvar.h"
#include "model/rategammainvar.h"
//#include "modeltest_wrapper.h"
#include "model/modelprotein.h"
#include "stoprule.h"
#include "mtreeset.h"
#include "mexttree.h"
#include "model/ratemeyerhaeseler.h"
#include "whtest_wrapper.h"
#include "model/partitionmodel.h"
//#include "zpipe.h"
#include "gzstream.h"
#include "guidedbootstrap.h"
#include "timeutil.h"
void readPatternLogLL(Alignment* aln, char *fileName, vector<double*> &logLLs, DoubleVector &trees_logl)
{
//First read the values from inFile to a DoubleVector
//int siteNum;
string currentString;
cout << "\nReading file containing site's loglikelihood: " << fileName << "...." << endl;
ifstream inFile;
int i;
try {
inFile.exceptions (ios::failbit | ios::badbit);
inFile.open(fileName);
/**really start reading*/
//read number of sites
getline(inFile,currentString);
//siteNum = convert_int(currentString.c_str());
//ignore "Site_Lh"
inFile.exceptions (ios::badbit);
while (!inFile.eof())
{
DoubleVector _logllVec;
if ( !(inFile >> currentString) ) break;
//reading each line of the file
//remove the badbit
//set the failbit again
double logl = 0.0;
for (i = 0; i < aln->getNSite(); i++) {
double ll;
if (!(inFile >> ll)) throw "Wrong logLL entry";
_logllVec.push_back(ll);
logl += ll;
}
double *logLL = new double[aln->getNPattern()];
memset(logLL, 0, sizeof(double) * aln->getNPattern());
//logLL.resize(aln->getNPattern(),0.0);
for (i = 0; i < _logllVec.size(); i++)
{
int patIndex = aln->getPatternID(i);
if ( logLL[patIndex] == 0 )
logLL[patIndex] = _logllVec[i];
else
if ( logLL[patIndex] != _logllVec[i] )
// outError("Conflicting between the likelihoods reported for pattern", aln->at(i));
outError("Conflicting between the likelihoods reported for pattern ", convertIntToString(i));
}
logLLs.push_back(logLL);
trees_logl.push_back(logl);
}/**finish reading*/
inFile.clear();
inFile.exceptions (ios::failbit | ios::badbit);
inFile.close();
} catch (bad_alloc) {
outError(ERR_NO_MEMORY);
} catch (const char *str) {
outError(str);
} catch (string str) {
outError(str);
} catch (ios::failure) {
outError(ERR_READ_INPUT);
} catch (...) {
outError(ERR_READ_ANY);
}
}
void computeExpectedNorFre(Alignment *aln, double *logLL, IntVector &expectedNorFre)
{
//IntVector expectedNorFre;
/* if ( logLL.empty())
outError("Error: log likelihood of patterns are not given!");
*/
int patNum = aln->getNPattern();
int alignLen = aln->getNSite();
//resize the expectedNorFre vector
expectedNorFre.resize(patNum,-1);
//Vector containing the likelihood of the pattern p_i
DoubleVector LL(patNum,-1.0);
double sumLL = 0; //sum of the likelihood of the patterns in the alignment
//Compute the likelihood from the logLL
for ( int i = 0; i < patNum; i++ )
{
LL[i] = exp(logLL[i]);
sumLL += LL[i];
}
//Vector containing l_i = p_i*ell/sum_i(p_i)
DoubleVector ell(patNum, -1.0);
//Compute l_i
for ( int i = 0; i < patNum; i++ )
{
ell[i] = (double)alignLen * LL[i] / sumLL;
}
//Vector containing r_i where r_0 = ell_0; r_{i+1} = ell_{i+1} + r_i - ordinaryRounding(r_i)
DoubleVector r(patNum, -1.0);
//Compute r_i and the expected normalized frequencies
r[0] = ell[0];
expectedNorFre[0] = (int)floor(ell[0]+0.5); //note that floor(_number+0.5) returns the ordinary rounding of _number
int sum = expectedNorFre[0];
for (int j = 1; j < patNum; j++ )
{
r[j] = ell[j] + r[j-1] - floor(r[j-1]+0.5);
expectedNorFre[j] = (int)floor(r[j]+0.5);
sum += expectedNorFre[j];
}
//cout << "Number of patterns: " << patNum << ", sum of expected sites: " << sum << endl;
//return expectedNorFre;
}
void computeTreeWeights(DoubleVector &reProb, IntVector &reW) {
int nDiff = reProb.size();
reW.resize(nDiff,-1);
DoubleVector ratio(nDiff,-1.0);
double sumRatio = 0;
int i;
double max_prob = reProb[0];
for ( i = 0; i < nDiff; i++ )
if (reProb[i] > max_prob) max_prob = reProb[i];
for ( i = 0; i < nDiff; i++ )
{
ratio[i] = exp(reProb[i]-max_prob);
sumRatio += ratio[i];
}
for ( i = 0; i < nDiff; i++ )
{
double temp = (ratio[i]/sumRatio)*1000000;
reW[i] = (int) floor(temp+0.5);
}
}
double euclideanDist(IntVector &vec1, IntVector &vec2) {
if (vec1.size() != vec2.size()) outError("Different vector size ", __func__);
double dist = 0.0;
for (int i = 0; i < vec1.size(); i++)
dist += (vec1[i]-vec2[i])*(vec1[i]-vec2[i]);
return sqrt(dist);
}
inline double computeRELL(double *pattern_lh, IntVector &pattern_freq) {
double lh = 0.0;
int npat = pattern_freq.size();
//if (npat != pattern_freq.size()) outError("Wrong vector size ", __func__);
for (int i = 0; i < npat; i++) lh += pattern_freq[i] * pattern_lh[i];
return lh;
}
/**
computing Expected Likelihood Weights (ELW) of trees by Strimmer & Rambaut (2002)
*/
void computeExpectedLhWeights(Alignment *aln, vector<double*> &pattern_lhs,
IntVector &treeids, int num_replicates, DoubleVector &elw,
const char* spec, DoubleVector *sh_pval = NULL) {
cout << "Computing Expected Likelihood Weights (ELW) with " << num_replicates << " replicates ..." << endl;
int i, j, ntrees = treeids.size();
elw.resize(treeids.size(), 0.0);
vector<DoubleVector> all_logl;
// general RELL logl
for (i = 0; i < num_replicates; i++) {
IntVector pattern_freq;
aln->createBootstrapAlignment(pattern_freq, spec);
DoubleVector logl;
logl.resize(treeids.size(), 0.0);
j = 0;
for (IntVector::iterator it = treeids.begin(); it != treeids.end(); it++, j++) {
logl[j] = computeRELL(pattern_lhs[*it], pattern_freq);
}
if (sh_pval) all_logl.push_back(logl);
double max_logl = logl[0];
for (j = 0; j < logl.size(); j++)
if (max_logl < logl[j]) max_logl = logl[j];
double sum = 0.0;
for (j = 0; j < logl.size(); j++) {
logl[j] = exp(logl[j] - max_logl);
sum += logl[j];
}
for (j = 0; j < logl.size(); j++)
elw[j] += (logl[j]/sum);
}
// normalize ELW weights to sum of 1
for (j = 0; j < elw.size(); j++)
elw[j] /= num_replicates;
if (!sh_pval) return;
// centering step in SH test
DoubleVector mean_logl;
mean_logl.resize(ntrees, 0);
for (i = 0; i < num_replicates; i++)
for (j = 0; j < ntrees; j++) {
mean_logl[j] += all_logl[i][j];
}
for (j = 0; j < ntrees; j++)
mean_logl[j] /= num_replicates;
for (i = 0; i < num_replicates; i++)
for (j = 0; j < ntrees; j++) {
all_logl[i][j] -= mean_logl[j];
}
// computing delta
for (i = 0; i < num_replicates; i++) {
double max_logl = *max_element(all_logl[i].begin(), all_logl[i].end());
for (j = 0; j < ntrees; j++) all_logl[i][j] = max_logl - all_logl[i][j];
}
// computing original delta
DoubleVector orig_logl;
orig_logl.resize(ntrees, 0);
for (j = 0; j < ntrees; j++) {
int tree_id = treeids[j];
i = 0;
for (Alignment::iterator it = aln->begin(); it != aln->end(); it++, i++)
orig_logl[j] += pattern_lhs[tree_id][i] * it->frequency;
}
double max_logl = *max_element(orig_logl.begin(), orig_logl.end());
for (j = 0; j < ntrees; j++) orig_logl[j] = max_logl - orig_logl[j];
sh_pval->resize(ntrees, 0);
for (i = 0; i < num_replicates; i++)
for (j = 0; j < ntrees; j++) {
if (orig_logl[j] < all_logl[i][j]) (*sh_pval)[j] += 1.0;
}
for (j = 0; j < ntrees; j++)
(*sh_pval)[j] /= num_replicates;
}
void printTrees(const char *ofile, IQTree &tree, IntVector *weights, bool compression)
{
int count = 0;
try {
ostream *out;
if (compression) out = new ogzstream;
else out = new ofstream;
out->exceptions(ios::failbit | ios::badbit);
if (compression)
((ogzstream*)out)->open(ofile);
else
((ofstream*)out)->open(ofile);
(*out) << "[ scale=" << tree.len_scale << " ]" << endl;
for (StringIntMap::iterator it = tree.treels.begin(); it != tree.treels.end(); it++)
if (!weights || weights->at(it->second)) {
int id = it->second;
out->precision(10);
(*out) << "[ lh=" << tree.treels_logl[id];
if (weights) (*out) << " w=" << weights->at(id);
(*out) << " ] ";
(*out) << tree.treels_newick[id] << endl;
count++;
}
cout << count << " tree(s) printed to " << ofile << endl;
if (compression) {
z_off_t uncompress = ((ogzstream*)out)->get_raw_bytes();
((ogzstream*)out)->close();
struct stat st;
stat(ofile, &st);
cout << "Compression ratio: " << ((double)st.st_size/uncompress)
<< " (" << uncompress << " -> " << st.st_size << " bytes)" << endl;
}
else
((ofstream*)out)->close();
delete out;
} catch (ios::failure) {
outError(ERR_WRITE_OUTPUT, ofile);
}
}
void printPatternLh(const char *ofile, IQTree *tree, bool compression) {
int count = 0, i;
int scale = 1000;
try {
ostream *out;
if (compression) out = new ogzstream;
else out = new ofstream;
out->exceptions(ios::failbit | ios::badbit);
if (compression)
((ogzstream*)out)->open(ofile/*, ios::out | ios::binary*/);
else
((ofstream*)out)->open(ofile/*, ios::out | ios::binary*/);
int idfirst = tree->treels.begin()->second;
(*out) << tree->treels.size() << " " << tree->aln->getNSite() <<
" " << tree->aln->getNPattern() << " " << scale << endl;
for (i = 0; i < tree->aln->getNSite(); i++)
(*out) << " " << tree->aln->getPatternID(i);
(*out) << endl;
// DO NOT CHANGE
for (StringIntMap::iterator it = tree->treels.begin(); it != tree->treels.end(); it++)
{
int id = it->second;
ASSERT(id < tree->treels_ptnlh.size());
//out->write((char*)tree->treels_ptnlh[id], sizeof(double)*tree->aln->size());
out->precision(10);
(*out) << -tree->treels_logl[id];
if (id == idfirst) {
out->precision(6);
for (int i = 0; i < tree->aln->size(); i++)
(*out) << " " << -tree->treels_ptnlh[id][i];
} else {
for (int i = 0; i < tree->aln->size(); i++) {
int diff = round((tree->treels_ptnlh[id][i]-tree->treels_ptnlh[idfirst][i])*scale);
(*out) << " " << diff;
}
}
(*out) << endl;
count++;
}
if (compression)
((ogzstream*)out)->close();
else
((ofstream*)out)->close();
delete out;
cout << count << " pattern log-likelihood vector(s) printed to " << ofile << endl;
} catch (ios::failure) {
outError(ERR_WRITE_OUTPUT, ofile);
}
}
void readPatternLh(const char *infile, IQTree *tree, bool compression) {
int count = 0, i;
int ntrees, nsite, nptn, scale;
double max_tol = 0.0;
try {
istream *in;
if (compression) in = new igzstream;
else in = new ifstream;
in->exceptions(ios::failbit | ios::badbit);
if (compression)
((igzstream*)in)->open(infile/*, ios::out | ios::binary*/);
else
((ifstream*)in)->open(infile/*, ios::out | ios::binary*/);
(*in) >> ntrees >> nsite >> nptn >> scale;
if (nsite != tree->aln->getNSite()) outError("Number of sites does not match");
if (nptn != tree->aln->getNPattern()) outError("Number of patterns does not match");
for (i = 0; i < nsite; i++) {
int id;
(*in) >> id;
if (id != tree->aln->getPatternID(i)) outError("Pattern ID does not match");
}
tree->treels_logl.resize(ntrees, 0.0);
tree->treels_ptnlh.resize(ntrees, NULL);
for (int id = 0; id < ntrees; id++)
{
double logl;
(*in) >> logl;
logl = -logl;
tree->treels_logl[id] = logl;
double *pattern_lh = new double[nptn];
if (id == 0) {
for (i = 0; i < nptn; i++) {
(*in) >> pattern_lh[i];
pattern_lh[i] = -pattern_lh[i];
}
} else {
double sum = 0.0;
for (i = 0; i < nptn; i++) {
int diff;
(*in) >> diff;
pattern_lh[i] = tree->treels_ptnlh[0][i]+(double)diff/scale;
sum += pattern_lh[i] * tree->aln->at(i).frequency;
}
max_tol = max(max_tol, fabs(sum-logl));
}
tree->treels_ptnlh[id] = pattern_lh;
count++;
}
cout << "max tolerance = " << max_tol << endl;
if (compression)
((igzstream*)in)->close();
else
((ifstream*)in)->close();
delete in;
cout << count << " pattern log-likelihood vector(s) read from " << infile << endl;
} catch (ios::failure) {
outError(ERR_READ_INPUT, infile);
}
}
void computeAllPatternLh(Params &params, IQTree &tree) {
/* this part copied from phyloanalysis.cpp */
tree.optimize_by_newton = params.optimize_by_newton;
ModelsBlock *models_block = new ModelsBlock;
try {
if (!tree.getModelFactory()) {
if (tree.isSuperTree())
tree.setModelFactory(new PartitionModel(params, (PhyloSuperTree*)&tree, models_block));
else
tree.setModelFactory(new ModelFactory(params, &tree, models_block));
}
} catch (string &str) {
outError(str);
}
delete models_block;
tree.setModel(tree.getModelFactory()->model);
tree.setRate(tree.getModelFactory()->site_rate);
if (tree.isSuperTree()) ((PhyloSuperTree*)&tree)->mapTrees();
tree.setLikelihoodKernel(params.SSE);
int model_df = tree.getModel()->getNDim() + tree.getRate()->getNDim();
cout << endl;
cout << "Estimating model parameters for: " << tree.getModelName() << " (" << model_df << " free parameters)" << endl;
cout << "Fixed branch lengths: " << ((params.fixed_branch_length) ? "Yes" : "No") << endl;
/* optimize model parameters */
cout << endl;
cout << "Optimizing model parameters" << endl;
double bestTreeScore = tree.getModelFactory()->optimizeParameters(params.fixed_branch_length, true, TOL_LIKELIHOOD);
cout << "Log-likelihood of the current tree: " << bestTreeScore << endl;
//Update tree score
tree.setCurScore(bestTreeScore);
if (tree.isSuperTree()) ((PhyloSuperTree*)&tree)->computeBranchLengths();
stringstream best_tree_string;
tree.printTree(best_tree_string, WT_TAXON_ID + WT_BR_LEN);
cout << "Computing pattern log-likelihoods for trees in " << params.user_file << " ..." << endl;
/* now compute the treels_ptnlh */
try {
istream *in;
if (params.do_compression) in = new igzstream;
else in = new ifstream;
in->exceptions(ios::failbit | ios::badbit);
if (params.do_compression)
((igzstream*)in)->open(params.user_file);
else
((ifstream*)in)->open(params.user_file);
double max_logl_diff = 0.0;
char ch;
(*in) >> ch;
if (ch == '[') {
string str;
(*in) >> str;
if (str.substr(0,6) == "scale=") {
tree.len_scale = convert_double(str.substr(6).c_str());
}
do {
(*in) >> ch;
} while (!in->eof() && ch != ']');
} else in->unget();
cout << "Applying branch length scaling: " << tree.len_scale << endl;
while (!in->eof()) {
in->exceptions(ios::goodbit);
(*in) >> ch;
if (in->eof()) break;
in->exceptions(ios::failbit | ios::badbit);
double expected_lh = 0.0;
if (ch == '[') {
string str;
(*in) >> str;
if (str.substr(0,3) == "lh=") {
expected_lh = convert_double(str.substr(3).c_str());
}
do {
(*in) >> ch;
} while (!in->eof() && ch != ']');
} else in->unget();
tree.freeNode();
tree.readTree(*in, tree.rooted);
tree.scaleLength(1.0/tree.len_scale); // scale the branch length
tree.assignLeafNames();
tree.initializeAllPartialLh();
tree.clearAllPartialLH();
if (tree.isSuperTree()) ((PhyloSuperTree*)&tree)->mapTrees();
double *pattern_lh = new double [tree.aln->getNPattern()];
if (!params.fixed_branch_length) {
tree.setCurScore(tree.optimizeAllBranches());
tree.computePatternLikelihood(pattern_lh);
} else {
tree.setCurScore(tree.computeLikelihood(pattern_lh));
}
if (expected_lh != 0.0)
max_logl_diff = max(max_logl_diff, fabs(tree.getCurScore()-expected_lh));
tree.treels_ptnlh.push_back(pattern_lh);
tree.treels_logl.push_back(tree.getCurScore());
cout << "Tree " << tree.treels_logl.size() << ": " << tree.getCurScore() << endl;
if (tree.treels_ptnlh.size() % 500 == 0)
cout << tree.treels_ptnlh.size() << " trees evaluated" << endl;
}
cout << tree.treels_ptnlh.size() << " trees evaluated in total" << endl;
cout << "Maximal log-likelihood error is " << max_logl_diff << endl << endl;
if (params.do_compression) ((igzstream*)in)->close();
else ((ifstream*)in)->close();
delete in;
} catch (ios::failure&) {
outError(ERR_READ_INPUT, params.user_file);
}
/* take back the current best tree */
best_tree_string.seekg(0, ios::beg);
tree.freeNode();
tree.readTree(best_tree_string, tree.rooted);
tree.assignLeafNames();
tree.initializeAllPartialLh();
tree.clearAllPartialLH();
}
void readTrees(Params &params, Alignment *alignment, IQTree &tree) {
if (!params.user_file) {
outError("You have to specify user tree file");
}
if (!params.second_tree) {
outError("Please provide target tree file via -sup option");
}
// read tree file
cout << "Reading tree file " << params.second_tree << endl;
tree.readTree(params.second_tree, params.is_rooted);
// reindex the taxa in the tree to aphabetical names
NodeVector taxa;
tree.getTaxa(taxa);
sort(taxa.begin(), taxa.end(), nodenamecmp);
int i = 0;
for (NodeVector::iterator it = taxa.begin(); it != taxa.end(); it++) {
(*it)->id = i++;
}
// read in corresponding site-log-likelihood for all trees
/*trees_logl = new DoubleVector;
pattern_lhs = new vector<double*>;
readPatternLogLL(alignment, params.siteLL_file, *pattern_lhs, *trees_logl);*/
if (params.siteLL_file) {
// read pattern loglikelihoods from file
readPatternLh(params.siteLL_file, &tree, params.do_compression);
} else {
// compute all pattern log-likelihoods
tree.setAlignment(alignment);
computeAllPatternLh(params, tree);
}
}
void runGuidedBootstrapReal(Params &params, Alignment *alignment, IQTree &tree) {
int i, j;
double begin_time = getCPUTime();
MTreeSet trees;
vector<double*> *pattern_lhs = NULL;
vector<IntVector> expected_freqs;
DoubleVector *trees_logl = NULL;
IntVector diff_tree_ids;
int ntrees = 0;
IntVector::iterator it;
if (!tree.save_all_trees) {
readTrees(params, alignment, tree);
pattern_lhs = &tree.treels_ptnlh;
trees_logl = &tree.treels_logl;
if (!params.distinct_trees) {
// read in trees file
trees.init(params.user_file, params.is_rooted, params.tree_burnin, params.tree_max_count);
if (pattern_lhs->size() != trees.size())
outError("Different number of sitelh vectors");
// get distinct trees
ntrees = trees.size();
IntVector tree_category;
trees.categorizeDistinctTrees(tree_category);
for (i = 0; i < ntrees; i++) {
int cat = tree_category[i];
if (diff_tree_ids.empty() || tree_category[diff_tree_ids.back()] < cat)
diff_tree_ids.push_back(i);
}
cout << diff_tree_ids.size() << " distinct trees detected" << endl;
}
} else {
if (tree.treels_ptnlh.empty()) {
cout << "New bootstrap is not applicable due to no candiate trees" << endl;
return;
}
pattern_lhs = &tree.treels_ptnlh;
trees_logl = &tree.treels_logl;
//cout << "logl_cutoff = " << tree.logl_cutoff << " after " << tree.max_candidate_trees <<" trees" << endl;
}
if (diff_tree_ids.empty()) {
diff_tree_ids.resize(pattern_lhs->size());
ntrees = pattern_lhs->size();
for (i = 0; i < ntrees; i++) diff_tree_ids[i] = i;
}
IntVector origin_freq;
for (i = 0; i < alignment->getNPattern(); i++)
origin_freq.push_back(alignment->at(i).frequency);
if (verbose_mode >= VB_DEBUG) {
cout << "Original pattern freq: ";
for (i = 0; i < alignment->getNPattern(); i++)
cout << alignment->at(i).frequency << " ";
cout << endl;
}
cout << pattern_lhs->size() << " log-likelihood vectors loaded" << endl;
int ndiff = diff_tree_ids.size();
// consider only 10,000 trees with highest likelihoods
if (params.max_candidate_trees > 0 && ndiff > params.max_candidate_trees) {
DoubleVector neg_logl;
neg_logl.resize(ndiff);
for (i = 0; i < ndiff; i++)
neg_logl[i] = -trees_logl->at(diff_tree_ids[i]);
nth_element(neg_logl.begin(), neg_logl.begin() + params.max_candidate_trees, neg_logl.end());
double logl_cutoff = -neg_logl[params.max_candidate_trees];
IntVector diff_tree_ids_new;
diff_tree_ids_new.reserve(params.max_candidate_trees);
for (i = 0; i < ndiff; i++)
if (trees_logl->at(diff_tree_ids[i]) > logl_cutoff)
diff_tree_ids_new.push_back(diff_tree_ids[i]);
diff_tree_ids = diff_tree_ids_new;
ndiff = diff_tree_ids.size();
cout << "Reduce to " << ndiff << " highest likelihood trees with cutoff " << logl_cutoff << endl;
}
IntVector orig_diff_tree_ids = diff_tree_ids;
// compute multinomial probability for every distinct tree
DoubleVector prob_vec;
for (it = diff_tree_ids.begin(); it != diff_tree_ids.end(); it++) {
double prob;
alignment->multinomialProb((*pattern_lhs)[*it], prob);
prob_vec.push_back(prob);
IntVector expected_freq;
computeExpectedNorFre(alignment, (*pattern_lhs)[*it], expected_freq);
expected_freqs.push_back(expected_freq);
if (verbose_mode >= VB_DEBUG) {
for (i = 0; i < expected_freq.size(); i++)
cout << expected_freq[i] << " ";
cout << endl;
}
}
IntVector diff_tree_weights;
if (params.use_elw_method) { // compute ELW weights
DoubleVector elw, sh_pval;
computeExpectedLhWeights(alignment, (*pattern_lhs), diff_tree_ids, params.gbo_replicates, elw, params.bootstrap_spec, &sh_pval);
string elw_file_name = params.out_prefix;
elw_file_name += ".elw";
ofstream elw_file(elw_file_name.c_str());
elw_file << "Treeid\tELW\tSH-pval" << endl;
for (i = 0; i < elw.size(); i++)
elw_file << diff_tree_ids[i]+1 << "\t" << elw[i] << "\t" << sh_pval[i] << endl;
elw_file.close();
cout << "ELW printed to " << elw_file_name << endl;
diff_tree_weights.resize(diff_tree_ids.size(), 0);
for (i = 0; i < diff_tree_ids.size(); i++)
diff_tree_weights[i] = round(elw[i]*1000000);
} else {
double own_prob;
alignment->multinomialProb(*alignment, own_prob);
//cout << "Own prob: " << own_prob << endl;
cout << "Conducting " << params.gbo_replicates << " non-parametric resampling ";
if (params.use_rell_method)
cout << "using RELL" << endl;
else
cout << "using Euclidean distance" << endl;
if (params.use_weighted_bootstrap)
cout << "Multinomial weighting for bootstrap sample ";
else
cout << "Equal weighting for bootstrap sample ";
if (params.use_max_tree_per_bootstrap)
cout << "and selecting one tree per bootstrap" << endl;
else
cout << "and selecting multiple trees per bootstrap" << endl;
double accepted_diff = 0.5;
cout << "Accepted logl difference: " << accepted_diff << endl;
// generate bootstrap samples
for (i = 0; i < params.gbo_replicates; i++) {
IntVector pattern_freq;
alignment->createBootstrapAlignment(pattern_freq, params.bootstrap_spec);
double prob;
if (params.use_weighted_bootstrap)
prob = alignment->multinomialProb(pattern_freq);
else
prob = 0;
if (params.use_rell_method) {
// select best-fit tree by RELL method
DoubleVector logl;
logl.resize(ndiff);
for (j = 0; j < ndiff; j++) {
int tree_id = diff_tree_ids[j];
logl[j] = computeRELL((*pattern_lhs)[tree_id], pattern_freq);
//if (verbose_mode >= VB_MAX) cout << logl << endl;
}
DoubleVector::iterator max_logl = max_element(logl.begin(), logl.end());
int k = 0;
if (params.use_max_tree_per_bootstrap) {
double logl_cutoff = *max_logl - accepted_diff;
int num_max = 0;
for (j = 0; j < ndiff; j++)
if (logl[j] >= logl_cutoff) num_max++;
if (num_max == 1) {
diff_tree_ids.push_back(diff_tree_ids[max_logl - logl.begin()]);
prob_vec.push_back(prob);
} else {
int max_rand = random_int(num_max);
for (j = 0; j < ndiff && max_rand >= 0; j++)
if (logl[j] >= logl_cutoff) {
max_rand--;
if (max_rand < 0) {
diff_tree_ids.push_back(diff_tree_ids[j]);
prob_vec.push_back(prob);
break;
}
}
}
if (verbose_mode >= VB_MAX) {
cout << "Bootstrap " << i+1 << " lprob=" << prob << " max_logl=" <<
*max_logl << " select " << diff_tree_ids[j]+1;
if (num_max > 1)
cout << " tie broken " << num_max << endl;
else
cout << endl;
}
} else {
DoubleVector weights;
weights.resize(ndiff);
for (j = 0; j < ndiff; j++) weights[j] = exp(logl[j] - *max_logl);
double sum = accumulate(weights.begin(), weights.end(), 0.0);
for (j = 0; j < ndiff; j++) weights[j] /= sum;
int max_id = max_element(weights.begin(), weights.end()) - weights.begin();
double weight_cutoff = weights[max_id] * 0.001;
for (j = 0; j < ndiff; j++) {
if (weights[j] >= weight_cutoff) {
diff_tree_ids.push_back(diff_tree_ids[j]);
prob_vec.push_back(prob + log(weights[j]));
k++;
}
}
if (verbose_mode >= VB_MAX)
cout << "Bootstrap " << i+1 << " lprob=" << prob << " max_id=" << max_id << " max_w=" <<
weights[max_id] << " " << k << " trees" << endl;
}
}
else {
// select best-fit tree by euclidean distance
double min_dist = -1.0;
int chosen_id = -1;
for (j = 0; j < expected_freqs.size(); j++) {
double dist = euclideanDist(pattern_freq, expected_freqs[j]);
//cout << dist << " ";
if (dist < min_dist || min_dist < 0) {
min_dist = dist;
chosen_id = j;
}
}
diff_tree_ids.push_back(diff_tree_ids[chosen_id]);
prob_vec.push_back(prob);
if (verbose_mode >= VB_MAX) {
cout << "Bootstrap " << i+1 << " choose id=" << diff_tree_ids[chosen_id]+1 // <<" dist=" << min_dist
<< " lprob=" << prob << endl;
}
}
if (verbose_mode >= VB_DEBUG) {
for (j = 0; j < pattern_freq.size(); j++)
cout << pattern_freq[j] << " ";
cout << endl;
}
}
// compute tree weights from the log-probability
computeTreeWeights(prob_vec, diff_tree_weights);
} // end of Arndt's method
IntVector final_tree_weights;
final_tree_weights.resize(ntrees, 0);
//for (i = 0; i < ntrees; i++) trees.tree_weights[i] = 0;
for (it = diff_tree_ids.begin(), i = 0; it != diff_tree_ids.end(); it++, i++) {
final_tree_weights[*it] += diff_tree_weights[i];
}
// now load in the trees
if (tree.save_all_trees) {
trees.init(tree.treels, tree.rooted, final_tree_weights);
string out_file = params.out_prefix;
if (params.do_compression) {
out_file += ".btrees.gz";
printTrees(out_file.c_str(), tree, &final_tree_weights, params.do_compression);
out_file = params.out_prefix;
out_file += ".alltrees.gz";
printTrees(out_file.c_str(), tree, NULL, params.do_compression);
if (params.print_site_lh) {
out_file = params.out_prefix;
out_file += ".ptnlh.gz";
printPatternLh(out_file.c_str(), &tree, params.do_compression);
}
}
} else if (params.distinct_trees) {
trees.init(params.user_file, params.is_rooted, params.tree_burnin, params.tree_max_count, NULL, &final_tree_weights, params.do_compression);
// assuming user_file contains species ID (instead of full name)
trees.assignLeafID();
//trees.init(params.user_file, params.is_rooted, params.tree_burnin, NULL);
/* if (pattern_lhs->size() != trees.size())
outError("Different number of sitelh vectors");*/
}
tree.summarizeBootstrap(params, trees);
/* int sum_weights = trees.sumTreeWeights();
if (verbose_mode >= VB_MED) {
for (i = 0; i < trees.size(); i++)
if (trees.tree_weights[i] > 0)
cout << "Tree " << i+1 << " weight= " << trees.tree_weights[i] * 100 / sum_weights << endl;
}
int max_tree_id = max_element(trees.tree_weights.begin(), trees.tree_weights.end()) - trees.tree_weights.begin();
cout << "max_tree_id = " << max_tree_id+1 << " max_weight = " << trees.tree_weights[max_tree_id];
cout << " (" << trees.tree_weights[max_tree_id] * 100 / sum_weights << "%)"<< endl;
// assign bootstrap support
SplitGraph sg;
SplitIntMap hash_ss;
// make the taxa name
vector<string> taxname;
taxname.resize(tree.leafNum);
tree.getTaxaName(taxname);
trees.convertSplits(taxname, sg, hash_ss, SW_COUNT, -1, false); // do not sort taxa
cout << sg.size() << " splits found" << endl;
// compute the percentage of appearance
sg.scaleWeight(100.0 / trees.sumTreeWeights(), true);
// printSplitSet(sg, hash_ss);
//sg.report(cout);
cout << "Creating bootstrap support values..." << endl;
stringstream tree_stream;
tree.printTree(tree_stream, WT_TAXON_ID | WT_BR_LEN);
MExtTree mytree;
mytree.readTree(tree_stream, tree.rooted);
mytree.assignLeafID();
mytree.createBootstrapSupport(taxname, trees, sg, hash_ss);
// now write resulting tree with supports
tree_stream.seekp(0, ios::beg);
mytree.printTree(tree_stream);
// now read resulting tree
tree_stream.seekg(0, ios::beg);
tree.freeNode();
tree.readTree(tree_stream, tree.rooted);
tree.assignLeafNames();
tree.initializeAllPartialLh();
tree.clearAllPartialLH();
string out_file;
if (!tree.save_all_trees) {
out_file = params.out_prefix;
out_file += ".suptree";
tree.printTree(out_file.c_str());
cout << "Tree with assigned bootstrap support written to " << out_file << endl;
}
out_file = params.out_prefix;
out_file += ".splits";
sg.saveFile(out_file.c_str(), true);
cout << "Split supports printed to NEXUS file " << out_file << endl;
out_file = params.out_prefix;
out_file += ".supval";
tree.writeInternalNodeNames(out_file);
cout << "Support values written to " << out_file << endl;*/
/*
if (!tree.save_all_trees) {
for (vector<double* >::reverse_iterator it = pattern_lhs->rbegin(); it != pattern_lhs->rend(); it++)
delete [] (*it);
delete pattern_lhs;
delete trees_logl;
}*/
double end_time = getCPUTime();
cout << "Time for guided bootstrap: " << (end_time-begin_time) << " seconds" << endl << endl;
//delete [] rfdist;
}
void runGuidedBootstrap(Params &params, Alignment *alignment, IQTree &tree) {
if (!params.check_gbo_sample_size) {
runGuidedBootstrapReal(params, alignment, tree);
return;
}
int max_sample = params.max_candidate_trees;
if (tree.save_all_trees) max_sample = tree.treels.size();
for (int sample_size = params.check_gbo_sample_size; sample_size <= max_sample; sample_size *= 2) {
cout << "CHECKING SAMPLING SIZE " << sample_size << endl;
int sample_saved = params.max_candidate_trees;
char *prefix_saved = params.out_prefix;
// set parameters properly
string prefix = params.out_prefix;
stringstream ss;
ss << ".S" << sample_size;
prefix += ss.str();
//params.out_prefix = (char*)prefix.c_str();
params.max_candidate_trees = sample_size;
runGuidedBootstrapReal(params, alignment, tree);
// restore parameters
params.max_candidate_trees = sample_saved;
params.out_prefix = prefix_saved;
}
}
/* compute logarithm of (n choose k) */
double logNchooseK(int n, int k) {
if (k > n-k) k = n-k;
double ret = 0.0;
int i;
for (i = k+1; i <= n; i++) ret += log(i);
for (i = 2; i <= n-k; i++) ret -= log(i);
return ret;
}
void generateFirstMultinorm(IntVector &x, int n, int k) {
x.resize(k, 0);
x.back() = n;
}
bool generateNextMultinorm(IntVector &x) {
if (x.size() < 2) return false;
int id = x.size()-1;
while (id >= 0 && x[id] == 0) id--;
if (id <= 0) return false;
x[id-1]++;
x.back() = x[id]-1;
if (id < x.size()-1) x[id] = 0;
return true;
}
void generateMultinorm(IntVector &x, int n, int k, int i, int sum) {
if (x.empty()) x.resize(k, 0);
if (i == k-1) {
x[i] = sum;
for (int j = 0; j < k; j++) cout << x[j] << " ";
cout << endl;
return;
}
for (int j = 0; j <= sum; j++) {
x[i] = j;
generateMultinorm(x, n, k, i+1, sum-j);
}
}
void runAvHTest(Params &params, Alignment *alignment, IQTree &tree) {
// collection of distinct bootstrapped site-pattern frequency vectors
IntVectorCollection boot_freqs;
// number of times the bootstrap alignments were resampled
IntVector boot_times;
// hash_map to quick search through the collection
IntVectorMap boot_map;
// multinomial probability of distinct bootstrap alignments
DoubleVector boot_prob;
// index from bootstrap number b to disinct bootstrap alignment
IntVector boot_index;
// number of distinct bootstrap aligments per B
IntVector diff_boot_alns;
// map from distinct alignment to tree
IntVector aln_tree_map;
StringIntMap tree_map;
// vector of all distinct reconstructed trees
MTreeSet boot_trees;
int id;
vector<ModelInfo> model_info;
cout << "Checking Arndt curiosity for " << params.avh_test << " bootstrap replicates ..." << endl;
// generate all distinct bootstrap alignments
cout << "Theoretical number of distinct alignments = " <<
exp(logNchooseK(alignment->getNSite()+alignment->getNPattern()-1, alignment->getNPattern()-1)) << endl;
IntVector afreq;
//generateMultinorm(x, alignment->getNSite(), alignment->getNPattern(), 0, alignment->getNSite());
generateFirstMultinorm(afreq, alignment->getNSite(), alignment->getNPattern());
int num_multi = 0;
do {
num_multi++;
cout << num_multi << ": ";
for (id = 0; id < afreq.size(); id++) cout << afreq[id] << " ";
cout << endl;
IntVector *boot_freq = new IntVector;
*boot_freq = afreq;
boot_map[boot_freq] = boot_freqs.size();
boot_freqs.push_back(boot_freq);
boot_times.push_back(0);
boot_prob.push_back(alignment->multinomialProb(*boot_freq));
} while (generateNextMultinorm(afreq));
cout << num_multi << " distinct bootstrap alignments" << endl;
// generate usual bootstrap alignments
int diff_boot_aln = 0;
for (id = 0; id < params.avh_test; id++) {
IntVector *boot_freq = new IntVector;
alignment->createBootstrapAlignment(*boot_freq, params.bootstrap_spec);
IntVectorMap::iterator it = boot_map.find(boot_freq);
if (it == boot_map.end()) { // not found
outError(__func__);
boot_index.push_back(boot_freqs.size());
boot_map[boot_freq] = boot_freqs.size();
boot_freqs.push_back(boot_freq);
boot_times.push_back(1);
boot_prob.push_back(alignment->multinomialProb(*boot_freq));
} else {
if (boot_times[it->second] == 0) diff_boot_aln++;
boot_times[it->second]++;
boot_index.push_back(it->second);
delete boot_freq;
}
diff_boot_alns.push_back(diff_boot_aln);
}
cout << boot_freqs.size() << " distinct alignments have been sampled" << endl;
// reconstruct tree for each distinct alignment
string orig_model = params.model_name;
int saved_aLRT_replicates = params.aLRT_replicates;
params.aLRT_replicates = 0;
for (id = 0; id < boot_freqs.size(); id++) {
cout << endl << "===> COMPUTING TREE FOR ALIGNMENT " << id << endl;
Alignment *boot_aln = new Alignment;
boot_aln->extractPatternFreqs(alignment, *boot_freqs[id]);
IQTree boot_tree(boot_aln);
runTreeReconstruction(params, orig_model, boot_tree, model_info);
boot_tree.setRootNode(params.root);
stringstream ss;
boot_tree.printTree(ss, WT_SORT_TAXA);
string str = ss.str();
StringIntMap::iterator it = tree_map.find(str);
if (it == tree_map.end()) { // not found
tree_map[str] = boot_trees.size();
aln_tree_map.push_back(boot_trees.size());
MTree *tree = new MTree;
tree->readTree(ss, params.is_rooted);
boot_trees.push_back(tree);
} else {
aln_tree_map.push_back(it->second);
}
//delete boot_aln;
}
cout << boot_trees.size() << " distinct trees have been reconstructed" << endl;
string out_file = params.out_prefix;
out_file += ".bootmap";
ofstream out;
out.open(out_file.c_str());
for (id = 0; id < boot_freqs.size(); id++) {
for (int i = 0; i < boot_freqs[id]->size(); i++) out << boot_freqs[id]->at(i) << " ";
out << boot_prob[id] << " " << aln_tree_map[id] << endl;
}
out.close();
cout << "===> EVALUATING TREES ON ORIGINAL ALIGNMENT" << endl;
out_file = params.out_prefix;
out_file += ".trees";
boot_trees.printTrees(out_file.c_str(),WT_SORT_TAXA);
params.min_iterations = 0;
runTreeReconstruction(params, orig_model, tree, model_info);
params.treeset_file = (char*)out_file.c_str();
evaluateTrees(params, &tree);
params.aLRT_replicates = saved_aLRT_replicates;
double logn = log(params.avh_test);
if (verbose_mode >= VB_MED) {
for (int j = 0; j < boot_freqs.size(); j++) {
cout << "p=" << alignment->multinomialProb(*boot_freqs[j])
<< " p_obs=" << log(boot_times[j]) - logn << " tree=" << aln_tree_map[j] << " ";
//boot_trees[aln_tree_map[j]]->printTree(cout,WT_SORT_TAXA);
cout << " ";
for (int i = 0; i < boot_freqs[j]->size(); i++)
cout << boot_freqs[j]->at(i) << " ";
cout << endl;
}
}
// computing weights
double max_prob = *max_element(boot_prob.begin(), boot_prob.end());
DoubleVector boot_weight;
boot_weight.resize(boot_prob.size(), 0.0);
for (id = 0; id < boot_freqs.size(); id++)
boot_weight[id] = exp(boot_prob[id] - max_prob);
// summarize results
out_file = params.out_prefix;
out_file += ".avh";
out.open(out_file.c_str());
out << boot_trees.size() << endl;
//boot_trees.printTrees(out, WT_SORT_TAXA);
/* computing true bootstrap probabilities based on all distinct bootstrap alignments */
DoubleVector tree_weights;
tree_weights.resize(boot_trees.size(), 0);
for (id = 0; id < boot_freqs.size(); id++)
tree_weights[aln_tree_map[id]] += boot_weight[id];
double sum_weight = accumulate(tree_weights.begin(), tree_weights.end(), 0.0);
for (id = 0; id < boot_trees.size(); id++) {
tree_weights[id] /= sum_weight;
out << tree_weights[id] << endl;
}
out << "B\tTree\tpB_T\tDiff_B\tpwB_T" << endl;
for (int sample = 1; sample <= params.avh_test; sample++) {
// weighted bootstrap version
tree_weights.resize(0);
tree_weights.resize(boot_trees.size(), 0);
vector<bool> duplicated;
duplicated.resize(boot_freqs.size(), false);
for (id = 0; id < sample; id++)
if (!duplicated[boot_index[id]]) {
tree_weights[aln_tree_map[boot_index[id]]] += boot_weight[boot_index[id]];
duplicated[boot_index[id]] = true;
}
double sum_weight = accumulate(tree_weights.begin(), tree_weights.end(), 0.0);
for (id = 0; id < boot_trees.size(); id++) {
tree_weights[id] /= sum_weight;
}
// by standard bootstrap
DoubleVector normal_tree_weights;
normal_tree_weights.resize(boot_trees.size(), 0);
for (id = 0; id < sample; id++) {
normal_tree_weights[aln_tree_map[boot_index[id]]] += 1;
}
sum_weight = accumulate(normal_tree_weights.begin(), normal_tree_weights.end(), 0.0);
for (id = 0; id < boot_trees.size(); id++)
normal_tree_weights[id] /= sum_weight;
// print results
for (id = 0; id < boot_trees.size(); id++)
{
out << sample << "\t" << id << "\t" << normal_tree_weights[id] << "\t"
<< diff_boot_alns[sample-1] << "\t" << tree_weights[id] << endl;
}
}
out.close();
cout << "Results printed to " << out_file << endl;
for (IntVectorCollection::reverse_iterator rit = boot_freqs.rbegin(); rit != boot_freqs.rend(); rit++)
delete (*rit);
}
void runBootLhTest(Params &params, Alignment *alignment, IQTree &tree) {
// collection of distinct bootstrapped site-pattern frequency vectors
cout << "Doing likelihood-bootstrap plot using Kullback-Leibler distance with " << params.bootlh_test << " bootstrap replicates ..." << endl;
int id, ptn;
IntVector ptnfreq;
alignment->getPatternFreq(ptnfreq);
string orig_model = params.model_name;
vector<ModelInfo> model_info;
IntVector partitions;
if (params.bootlh_partitions) {
convert_int_vec(params.bootlh_partitions, partitions);
cout << "Using " << partitions.size() << " partitions" << endl;
}
string outfile = params.out_prefix;
outfile += ".bootlhtest";
ofstream out;
out.open(outfile.c_str());
string bootfreqfile = params.out_prefix; // bootstrap pattern frequency vector file
bootfreqfile += ".bootfreq";
ofstream outfreq;
outfreq.open(bootfreqfile.c_str());
//out << "ID KLdist" << endl;
out.precision(8);
params.min_iterations = 0; // do not do tree search
int start_site = 0;
for (id = 0; id < params.bootlh_test; id++) {
Alignment *boot_aln;
IntVector boot_freq;
if (id==0) {
// include original alignment
boot_aln = alignment;
boot_freq = ptnfreq;
} else if (id <= partitions.size()) {
int end_site = start_site + partitions[id-1];
boot_freq.resize(ptnfreq.size(), 0);
for (int site = start_site; site < end_site; site++)
boot_freq[alignment->getPatternID(site)]++;
// now multiplying the frequencies
for ( ptn = 0; ptn < boot_freq.size(); ptn++)
boot_freq[ptn]*=partitions.size();
if (alignment->isSuperAlignment())
boot_aln = new SuperAlignment;
else
boot_aln = new Alignment;
stringstream sitestr;
sitestr << start_site+1 << "-" << end_site;
cout << "-->Extracting sites " << sitestr.str() << endl;
boot_aln->extractSites(alignment, sitestr.str().c_str());
// now multiplying the frequencies
for (ptn = 0; ptn < boot_aln->size(); ptn++)
boot_aln->at(ptn).frequency *= partitions.size();
start_site = end_site;
} else {
if (alignment->isSuperAlignment())
boot_aln = new SuperAlignment;
else
boot_aln = new Alignment;
boot_aln->createBootstrapAlignment(alignment, &boot_freq, params.bootstrap_spec);
}
for ( ptn = 0; ptn < boot_freq.size(); ptn++)
outfreq << "\t" << boot_freq[ptn];
outfreq << endl;
// computing Kullback-Leibler distance
double dist = 0.0;
for ( ptn = 0; ptn < ptnfreq.size(); ptn++)
if (boot_freq[ptn]) {
dist += log(((double)boot_freq[ptn])/ptnfreq[ptn]) * boot_freq[ptn];
}
dist /= tree.getAlnNSite();
out << id+1 << " " << dist;
// now run analysis and compute tree likelihood for params.treeset_file
if (params.treeset_file) {
IQTree boot_tree(boot_aln);
runTreeReconstruction(params, orig_model, boot_tree, model_info);
vector<TreeInfo> info;
IntVector distinct_ids;
evaluateTrees(params, &boot_tree, info, distinct_ids);
for (int i = 0; i < info.size(); i++)
out << " " << info[i].logl;
}
out << endl;
if (id != 0)
delete boot_aln;
}
out.close();
outfreq.close();
}