introvoyz041's picture
Migrated from GitHub
e084fac verified
/***************************************************************************
* Copyright (C) 2009 by BUI Quang Minh *
* [email protected] *
* *
* This program is free software; you can redistribute it and/or modify *
* it under the terms of the GNU General Public License as published by *
* the Free Software Foundation; either version 2 of the License, or *
* (at your option) any later version. *
* *
* This program is distributed in the hope that it will be useful, *
* but WITHOUT ANY WARRANTY; without even the implied warranty of *
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the *
* GNU General Public License for more details. *
* *
* You should have received a copy of the GNU General Public License *
* along with this program; if not, write to the *
* Free Software Foundation, Inc., *
* 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA. *
***************************************************************************/
#ifndef NGS_H
#define NGS_H
#include "tree/phylotree.h"
#include "alignment/alignmentpairwise.h"
#include "model/ratemeyerdiscrete.h"
/*
collection of classes for Next-generation sequencing
*/
/**
NGS Pairwise alignment
@author BUI Quang Minh <[email protected]>
*/
class NGSAlignment : public AlignmentPairwise
{
public:
/**
constructor
@param filename file in Fritz's format
*/
NGSAlignment(PhyloTree *atree);
NGSAlignment(const char *filename);
/**
constructor
@param nstate number of states
@param ncat number of categories
@param freq pair-state frequencies for all categories
*/
NGSAlignment(int nstate, int ncat, double *freq);
NGSAlignment(int nstate, string &seq1, string &seq2);
virtual char convertState(char state, SeqType seq_type);
/**
read file in Fritz's format
*/
void readFritzFile(const char *filename);
/**
compute empirical state frequencies from the alignment
@param state_freq (OUT) is filled with state frequencies, assuming state_freq was allocated with
at least num_states entries.
*/
virtual void computeStateFreq(double *state_freq, size_t num_unknown_states = 0);
/**
compute the sum of pair state frequencies over all categories
@param sum_pair_freq (OUT) will be filled in with num_states*num_states entries.
Memory has to be allocated before calling this function.
*/
void computeSumPairFreq (double *sum_pair_freq);
/**
compute empirical rates between state pairs
@param rates (OUT) vector of size num_states*(num_states-1)/2 for the rates
*/
virtual void computeDivergenceMatrix (double *rates);
/**
compute the empirical distance for a category, used to initialize rate scaling factor
@param cat specific category, between 0 and ncategory-1
*/
double computeEmpiricalDist(int cat);
/**
negative likelihood function for a category with a rate scaling factor
@param cat specific category, between 0 and ncategory-1
@param value a rate scaling factor
@return negative log-likelihood (for minimization purpose)
*/
double computeFunctionCat(int cat, double value);
/**
negative likelihood and 1st and 2nd derivative function for a category with a rate scaling factor
@param cat specific category, between 0 and ncategory-1
@param value a rate scaling factor
@param df (OUT) 1st derivative
@param ddf (OUT) 2nd derivative
@return negative log-likelihood (for minimization purpose)
*/
void computeFuncDervCat(int cat, double value, double &df, double &ddf);
/**
number of category
*/
int ncategory;
//double *pair_freq;
};
class NGSTree : public PhyloTree {
public:
/**
* Constructor with given alignment
* @param params program parameters
* @param alignment
*/
NGSTree(Params &params, NGSAlignment *alignment);
/**
compute the tree likelihood
@param pattern_lh (OUT) if not NULL, the function will assign pattern log-likelihoods to this vector
assuming pattern_lh has the size of the number of patterns
@return tree likelihood
*/
virtual double computeLikelihood(double *pattern_lh = NULL);
/**
optimize all branch lengths of the tree
@param iterations number of iterations to loop through all branches
@return the likelihood of the tree
*/
virtual double optimizeAllBranches(int my_iterations = 100, double tolerance = TOL_LIKELIHOOD, int maxNRStep = 100);
};
class NGSRate : public RateMeyerDiscrete {
public:
/**
@param tree must be NGSTree type
*/
NGSRate(PhyloTree *tree);
/**
get rate category of a specified site-pattern.
@param ptn pattern ID
@return the rate category of the specified site-pattern
*/
virtual int getPtnCat(int ptn) { return 0; }
/**
optimize rates of all site-patterns
compute categorized rates from the "continuous" rate of the original Meyer & von Haeseler model.
The current implementation uses the k-means algorithm with k-means++ package.
*/
virtual double optimizeParameters(double epsilon);
/**
This function is inherited from Optimization class for optimizting site rates
@param value x-value of the function
@return f(value) of function f you want to minimize
*/
virtual double computeFunction(double value);
/**
This function calculate f(value), first derivative f'(value) and 2nd derivative f''(value).
@param value x-value of the function
@param df (OUT) first derivative
@param ddf (OUT) second derivative
@return f(value) of function f you want to minimize
*/
virtual void computeFuncDerv(double value, double &df, double &ddf);
/**
classify rates into categories.
@param tree_lh the current tree log-likelihood
*/
virtual double classifyRates(double tree_lh) { return tree_lh; }
/**
write information
@param out output stream
*/
virtual void writeInfo(ostream &out);
};
class NGSRateCat : public RateMeyerDiscrete {
public:
/**
@param tree must be NGSTree type
*/
NGSRateCat(PhyloTree *tree, int ncat);
/**
optimize rates of all site-patterns
compute categorized rates from the "continuous" rate of the original Meyer & von Haeseler model.
The current implementation uses the k-means algorithm with k-means++ package.
*/
virtual double optimizeParameters(double epsilon);
/**
return the number of dimensions
*/
virtual int getNDim();
/**
the target function which needs to be optimized
@param x the input vector x
@return the function value at x
*/
virtual double targetFunk(double x[]);
/**
write information
@param out output stream
*/
virtual void writeInfo(ostream &out);
/**
proportion of position categories
*/
double *proportion;
/**
sum of pair freq from all positions
*/
double *sum_pair_freq;
protected:
/**
this function is served for the multi-dimension optimization. It should pack the model parameters
into a vector that is index from 1 (NOTE: not from 0)
@param variables (OUT) vector of variables, indexed from 1
*/
virtual void setVariables(double *variables);
/**
this function is served for the multi-dimension optimization. It should assign the model parameters
from a vector of variables that is index from 1 (NOTE: not from 0)
@param variables vector of variables, indexed from 1
@return TRUE if parameters are changed, FALSE otherwise (2015-10-20)
*/
virtual bool getVariables(double *variables);
};
class NGSTreeCat : public NGSTree {
public:
/**
* Constructor with given alignment
* @param params program parameters
* @param alignment
*/
NGSTreeCat(Params &params, NGSAlignment *alignment);
/**
compute the tree likelihood
@param pattern_lh (OUT) if not NULL, the function will assign pattern log-likelihoods to this vector
assuming pattern_lh has the size of the number of patterns
@return tree likelihood
*/
virtual double computeLikelihood(double *pattern_lh = NULL);
};
class NGSRead : public NGSAlignment {
public:
/**
constructor
*/
NGSRead(PhyloTree *atree);
void init();
//int orig_length;
/**
alignment score
*/
int score; //brauch ich das???
/**
read ID
*/
int id;
//int scaff_id;
/**
matched position in the reference sequence
*/
int match_pos;
/**
TRUE for mapping forward strand, FALSE for backward
*/
bool direction;
/**
name of the reference sequence for which match found
*/
string chr;
/**
mapped portion of reference sequence
*/
string scaff;
/**
mapped portion of read
*/
string read;
/**
number of times that read is mapped (multiple optimal alignment scores)
*/
double times;
/**
TRUE if it is the first match, FALSE otherwise (in case of multiple hits)
*/
bool flag;
/**
alignment identity
*/
float identity;
/**
read name
*/
string name;
double homo_rate;
void computePairFreq();
/**
compute the likelihood for a distance between two sequences. Used for the ML optimization of the distance.
@param value x-value of the function
@return log-likelihood
*/
virtual double computeFunction(double value);
/**
This function calculate f(value), first derivative f'(value) and 2nd derivative f''(value).
used by Newton raphson method to minimize the function.
@param value x-value of the function
@param df (OUT) first derivative
@param ddf (OUT) second derivative
@return f(value) of function f you want to minimize
*/
virtual void computeFuncDerv(double value, double &df, double &ddf);
};
struct ReadInfo {
int id;
float identity;
float distance;
float logl;
float homo_distance;
float homo_logl;
};
class NGSReadSet : public vector<ReadInfo> {
public:
/**
read in file containing mapped reads to the reference
@param filename file name
@param ref_ID reference sequence name to accept reads
@param ident identity threshold to accept reads
@param mismatches number of exact mismatches to accept reads
*/
void parseNextGen(string filename, string ref_ID="total",double ident=0.0,int mismatches=-1);
/**
this function will be called everytime a read is accepted from the parseNextGen()
@param tempread read at current position while parsing
*/
virtual void processReadWhileParsing(NGSRead &tempread);
void writeFreqMatrix(ostream &out);
/**
write information
*/
void writeInfo();
PhyloTree *tree;
double homo_rate;
vector<double*> pair_freq;
vector<double*> state_freq;
bool ngs_ignore_gaps;
};
/**
Main function
@param params input program parameters
*/
void runNGSAnalysis(Params &params);
#endif