Datasets:
File size: 8,398 Bytes
373367f f7403e0 373367f 10970e3 373367f f7403e0 373367f f7403e0 373367f f7403e0 373367f f7403e0 373367f f7403e0 373367f f7403e0 373367f f7403e0 373367f f7403e0 373367f f7403e0 373367f f7403e0 373367f f7403e0 373367f f7403e0 373367f |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 |
import conllu
import datasets
logger = datasets.logging.get_logger(__name__)
_CITATION = ""
BY_NAME = "by_name"
BY_TYPE = "by_type"
TAGSET_NKJP = "nkjp"
TAGSET_UD = "ud"
EXTENSION_CONLL = "conll"
EXTENSION_CONLLU = "conllu"
EXTENSION_CONLL_SPACE_AFTER = "conll_space_after"
_EXTENSIONS = [EXTENSION_CONLL, EXTENSION_CONLLU, EXTENSION_CONLL_SPACE_AFTER]
_DESCRIPTION = {
BY_NAME: {
TAGSET_NKJP: "NLPrePL divided by document name for NKJP tagset",
TAGSET_UD: "NLPrePL divided by document name for UD tagset"
},
BY_TYPE: {
TAGSET_NKJP: "NLPrePL divided by document type for NKJP tagset",
TAGSET_UD: "NLPrePL divided by document type for UD tagset"
}
}
_TYPES = [BY_NAME, BY_TYPE]
_TAGSETS = [TAGSET_NKJP, TAGSET_UD]
_URLS = {
BY_NAME: {
EXTENSION_CONLLU: {
TAGSET_NKJP: {
'train': "nkjp_tagset/fair_by_document_name/_conllu/train_nlprepl-nkjp.conllu.gz",
'dev': "nkjp_tagset/fair_by_document_name/_conllu/dev_nlprepl-nkjp.conllu.gz",
'test': "nkjp_tagset/fair_by_document_name/_conllu/test_nlprepl-nkjp.conllu.gz"
},
TAGSET_UD: {
'train': "ud_tagset/fair_by_document_name/_conllu/train_nlprepl-ud.conllu.gz",
'dev': "ud_tagset/fair_by_document_name/_conllu/dev_nlprepl-ud.conllu.gz",
'test': "ud_tagset/fair_by_document_name/_conllu/test_nlprepl-ud.conllu.gz"
}
},
EXTENSION_CONLL: {
TAGSET_NKJP: {
'train': "nkjp_tagset/fair_by_document_name/_conll/train_nlprepl-nkjp.conll.gz",
'dev': "nkjp_tagset/fair_by_document_name/_conll/dev_nlprepl-nkjp.conll.gz",
'test': "nkjp_tagset/fair_by_document_name/_conll/test_nlprepl-nkjp.conll.gz"
}
},
EXTENSION_CONLL_SPACE_AFTER: {
TAGSET_NKJP: {
'train': "nkjp_tagset/fair_by_document_name/_conll_space_after/multiword_space_after_train_nlprepl-nkjp.conll.gz",
'dev': "nkjp_tagset/fair_by_document_name/_conll_space_after/multiword_space_after_dev_nlprepl-nkjp.conll.gz",
'test': "nkjp_tagset/fair_by_document_name/_conll_space_after/multiword_space_after_test_nlprepl-nkjp.conll.gz"
}
},
},
BY_TYPE: {
EXTENSION_CONLLU: {
TAGSET_NKJP: {
'train': "nkjp_tagset/fair_by_document_type/_conllu/train_nlprepl-nkjp.conllu.gz",
'dev': "nkjp_tagset/fair_by_document_type/_conllu/dev_nlprepl-nkjp.conllu.gz",
'test': "nkjp_tagset/fair_by_document_type/_conllu/test_nlprepl-nkjp.conllu.gz"
},
TAGSET_UD: {
'train': "ud_tagset/fair_by_document_type/_conllu/train_nlprepl-ud.conllu.gz",
'dev': "ud_tagset/fair_by_document_type/_conllu/dev_nlprepl-ud.conllu.gz",
'test': "ud_tagset/fair_by_document_type/_conllu/test_nlprepl-ud.conllu.gz"
}
},
EXTENSION_CONLL: {
TAGSET_NKJP: {
'train': "nkjp_tagset/fair_by_document_type/_conll/train_nlprepl-nkjp.conll.gz",
'dev': "nkjp_tagset/fair_by_document_type/_conll/dev_nlprepl-nkjp.conll.gz",
'test': "nkjp_tagset/fair_by_document_type/_conll/test_nlprepl-nkjp.conll.gz"
}
},
EXTENSION_CONLL_SPACE_AFTER: {
TAGSET_NKJP: {
'train': "nkjp_tagset/fair_by_document_type/_conllu_space_after/multiword_space_after_train_nlprepl-nkjp.conll.gz",
'dev': "nkjp_tagset/fair_by_document_type/_conllu_space_after/multiword_space_after_dev_nlprepl-nkjp.conll.gz",
'test': "nkjp_tagset/fair_by_document_type/_conllu_space_after/multiword_space_after_test_nlprepl-nkjp.conll.gz"
}
},
}
}
class NLPrePLConfig(datasets.BuilderConfig):
"""BuilderConfig for NKJP1M"""
def __init__(self, tagset, extension, **kwargs):
"""BuilderConfig forNKJP1M.
Args:
**kwargs: keyword arguments forwarded to super.
"""
super(NLPrePLConfig, self).__init__(**kwargs)
self.tagset = tagset
self.extension = extension
class NLPrePL(datasets.GeneratorBasedBuilder):
"""NKJP1M dataset."""
BUILDER_CONFIGS = [
NLPrePLConfig(
name=t + "-" + tagset + "-" + extension,
version=datasets.Version("1.0.0"),
tagset=tagset,
extension=extension,
description=_DESCRIPTION[t]
)
for t in _URLS.keys() for extension in _URLS[t].keys() for tagset in _URLS[t][extension].keys()
]
def _info(self):
dataset, tagset, extension = self.config.name.split("-")
return datasets.DatasetInfo(
description=_DESCRIPTION[dataset][tagset],
features=datasets.Features(
{
"sent_id": datasets.Value("string"),
"text": datasets.Value("string"),
"id": datasets.Value("string"),
"tokens": datasets.Sequence(datasets.Value("string")),
"lemmas": datasets.Sequence(datasets.Value("string")),
"upos": datasets.Sequence(datasets.Value("string")),
"xpos": datasets.Sequence(datasets.Value("string")),
"feats": datasets.Sequence(datasets.Value("string")),
"head": datasets.Sequence(datasets.Value("string")),
"deprel": datasets.Sequence(datasets.Value("string")),
"deps": datasets.Sequence(datasets.Value("string")),
"misc": datasets.Sequence(datasets.Value("string")),
}
),
supervised_keys=None,
homepage="http://nkjp.pl/",
citation=_CITATION,
)
def _split_generators(self, dl_manager):
"""Returns SplitGenerators."""
dataset, tagset, extension = self.config.name.split("-")
urls = _URLS[dataset][extension][tagset]
downloaded_files = dl_manager.download_and_extract(urls)
return [
datasets.SplitGenerator(
name=datasets.Split.TRAIN,
gen_kwargs={"filepath": downloaded_files["train"]}),
datasets.SplitGenerator(
name=datasets.Split.VALIDATION,
gen_kwargs={"filepath": downloaded_files["dev"]}),
datasets.SplitGenerator(
name=datasets.Split.TEST,
gen_kwargs={"filepath": downloaded_files["test"]}),
]
def _generate_examples(self, filepath):
def generate_misc_column(misc_content: dict):
if misc_content is None:
return ""
else:
return "|".join([k + "=" + v for k, v in misc_content.items()])
id = 0
logger.info("⏳ Generating examples from = %s", filepath)
print("Cached PATHS -- copy into STEP 5:", filepath)
with open(filepath, 'r', encoding="utf-8") as f:
tokenlist = list(conllu.parse_incr(f))
for sent in tokenlist:
if "sent_id" in sent.metadata:
idx = sent.metadata["sent_id"]
else:
idx = id
tokens = [token["form"] for token in sent]
if "text" in sent.metadata:
txt = sent.metadata["text"]
else:
txt = " ".join(tokens)
yield id, {
"sent_id": str(idx),
"text": txt,
"id": [token["id"] for token in sent],
"tokens": [token["form"] for token in sent],
"lemmas": [token["lemma"] for token in sent],
"upos": [token["upos"] for token in sent],
"xpos": [token["xpos"] for token in sent],
"feats": [str(token["feats"]) for token in sent],
"head": [str(token["head"]) for token in sent],
"deprel": [str(token["deprel"]) for token in sent],
"deps": [str(token["deps"]) for token in sent],
"misc": [generate_misc_column(token["misc"]) for token in sent],
}
id += 1
|