jiaruz2 commited on
Commit
ab61d0c
Β·
verified Β·
1 Parent(s): f7f0a11

Update README.md

Browse files
Files changed (1) hide show
  1. README.md +5 -27
README.md CHANGED
@@ -9,7 +9,11 @@ configs:
9
  data_files: sqa_query.jsonl
10
  ---
11
 
12
- πŸ“„ [Paper](https://huggingface.co/papers/2504.01346) | πŸ‘¨πŸ»β€πŸ’» [Code](https://github.com/jiaruzouu/T-RAG)
 
 
 
 
13
 
14
  For MultiTableQA, we release a comprehensive benchmark, including five different datasets covering table fact-checking, single-hop QA, and multi-hop QA:
15
  | Dataset | Link |
@@ -23,32 +27,6 @@ For MultiTableQA, we release a comprehensive benchmark, including five different
23
 
24
  MultiTableQA extends the traditional single-table QA setting into a multi-table retrieval and question answering benchmark, enabling more realistic and challenging evaluations.
25
 
26
- ## Sample Usage
27
-
28
- This dataset (`MultiTableQA-SQA`) is part of the larger **MultiTableQA** benchmark. To prepare the full benchmark, you can follow these steps from the official T-RAG GitHub repository.
29
-
30
- First, clone the repository and set up the environment:
31
-
32
- ```bash
33
- git clone https://github.com/jiaruzouu/T-RAG.git
34
- cd T-RAG
35
-
36
- conda create -n trag python=3.11.9
37
- conda activate trag
38
-
39
- # Install dependencies
40
- pip install -r requirements.txt
41
- ```
42
-
43
- Then, navigate to the `table2graph` directory and run the data preparation script:
44
-
45
- ```bash
46
- cd table2graph
47
- bash scripts/prepare_data.sh
48
- ```
49
-
50
- This script will automatically fetch the source tables, apply decomposition (row/column splitting), and generate the benchmark splits, including the `MultiTableQA-SQA` data available in this repository.
51
-
52
  ---
53
  # Citation
54
 
 
9
  data_files: sqa_query.jsonl
10
  ---
11
 
12
+ πŸ“„ [Paper](https://arxiv.org/abs/2504.01346) | πŸ‘¨πŸ»β€πŸ’» [Code](https://github.com/jiaruzouu/T-RAG)
13
+
14
+ ## πŸ” Introduction
15
+
16
+ Retrieval-Augmented Generation (RAG) has become a key paradigm to enhance Large Language Models (LLMs) with external knowledge. While most RAG systems focus on **text corpora**, real-world information is often stored in **tables** across web pages, Wikipedia, and relational databases. Existing methods struggle to retrieve and reason across **multiple heterogeneous tables**.
17
 
18
  For MultiTableQA, we release a comprehensive benchmark, including five different datasets covering table fact-checking, single-hop QA, and multi-hop QA:
19
  | Dataset | Link |
 
27
 
28
  MultiTableQA extends the traditional single-table QA setting into a multi-table retrieval and question answering benchmark, enabling more realistic and challenging evaluations.
29
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
30
  ---
31
  # Citation
32