nielsr HF Staff commited on
Commit
5ac1e74
Β·
verified Β·
1 Parent(s): 64dfd33

Improve dataset card: Add task category, tags, paper/code links, and sample usage

Browse files

This PR enhances the `InfraDepth` dataset card by:
- Adding the `task_categories` metadata (`depth-estimation`).
- Including relevant `tags` such as `3d-point-cloud`, `image-restoration`, `image-segmentation`, and `civil-engineering` for improved discoverability.
- Providing a direct link to the paper ([https://huggingface.co/papers/2509.03324](https://huggingface.co/papers/2509.03324)).
- Adding a link to the official GitHub repository for the associated code ([https://github.com/Jingyixiong/InfraDiffusion-official-implement](https://github.com/Jingyixiong/InfraDiffusion-official-implement)).
- Incorporating a "Sample Usage" section with code snippets from the GitHub README, demonstrating how to run InfraDiffusion using the dataset.
- Populating the "Citation" section with the full BibTeX entry from the paper.

These changes will make the dataset more discoverable and easier to use for the community.

Files changed (1) hide show
  1. README.md +58 -3
README.md CHANGED
@@ -1,10 +1,17 @@
1
  ---
2
- license: cc-by-nc-4.0
3
  language:
4
  - en
5
- pretty_name: InfraDepth
6
  size_categories:
7
  - 100M<n<1B
 
 
 
 
 
 
 
 
8
  ---
9
 
10
  ## InfraDepth
@@ -16,6 +23,11 @@ The dataset combines **3D point clouds of masonry bridges and tunnels**, project
16
 
17
  ---
18
 
 
 
 
 
 
19
  ## πŸ“ Dataset Structure
20
 
21
  ```bash
@@ -74,6 +86,49 @@ Each `patch_{idx}.npz` file contains:
74
 
75
  ---
76
 
77
- ## πŸ“Œ Citation
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
78
  If you use this dataset, please cite the associated paper:
79
 
 
 
 
 
 
 
 
 
 
1
  ---
 
2
  language:
3
  - en
4
+ license: cc-by-nc-4.0
5
  size_categories:
6
  - 100M<n<1B
7
+ pretty_name: InfraDepth
8
+ task_categories:
9
+ - depth-estimation
10
+ tags:
11
+ - 3d-point-cloud
12
+ - image-restoration
13
+ - image-segmentation
14
+ - civil-engineering
15
  ---
16
 
17
  ## InfraDepth
 
23
 
24
  ---
25
 
26
+ **Paper**: [InfraDiffusion: zero-shot depth map restoration with diffusion models and prompted segmentation from sparse infrastructure point clouds](https://huggingface.co/papers/2509.03324)
27
+ **Code**: [https://github.com/Jingyixiong/InfraDiffusion-official-implement](https://github.com/Jingyixiong/InfraDiffusion-official-implement)
28
+
29
+ ---
30
+
31
  ## πŸ“ Dataset Structure
32
 
33
  ```bash
 
86
 
87
  ---
88
 
89
+ ## ✨ Sample Usage
90
+
91
+ The `InfraDepth` dataset is designed to be used with the `InfraDiffusion` framework. Below are examples from the official GitHub repository on how to run InfraDiffusion restoration using the dataset:
92
+
93
+ **(1) Masonry Tunnel Dataset**
94
+ ```bash
95
+ python main.py data=tunnels \
96
+ image_restore.deg=inpainting \
97
+ image_restore.sigma_y=0.16 \
98
+ general.save_results=true
99
+ ```
100
+
101
+ **(2) Masonry Bridge Dataset**
102
+ ```bash
103
+ python main.py data=masonry_bridges \
104
+ image_restore.deg=inpainting \
105
+ image_restore.sigma_y=0.16 \
106
+ general.save_results=true
107
+ ```
108
+
109
+ **(3) Selecting a Specific Infrastructure (infrastructure names can be found in `configs/data`)**
110
+ Example: To just get image restoration results on `hertfordshire`, override it:
111
+ ```bash
112
+ python main.py \
113
+ data=masonry_bridges \
114
+ data.infra_name='begc' \
115
+ image_restore.deg=inpainting \
116
+ image_restore.sigma_y=0.16 \
117
+ general.save_results=true
118
+ ```
119
+
120
+ For more detailed usage instructions, including environment setup and SAM segmentation, please refer to the [official GitHub repository](https://github.com/Jingyixiong/InfraDiffusion-official-implement).
121
+
122
+ ---
123
+
124
+ ## πŸ“š Citation
125
  If you use this dataset, please cite the associated paper:
126
 
127
+ ```bibtex
128
+ @article{jing2025infradiffusion,
129
+ title={InfraDiffusion: zero-shot depth map restoration with diffusion models and prompted segmentation from sparse infrastructure point clouds},
130
+ author={Jing, Yixiong and Zhang, Cheng and Wu, Haibing and Wang, Guangming and Wysocki, Olaf and Sheil, Brian},
131
+ year={2025},
132
+ note={Preprint}
133
+ }
134
+ ```