Datasets:
Delete loading script
Browse files- lj_speech.py +0 -116
lj_speech.py
DELETED
|
@@ -1,116 +0,0 @@
|
|
| 1 |
-
# coding=utf-8
|
| 2 |
-
# Copyright 2021 The TensorFlow Datasets Authors and the HuggingFace Datasets Authors.
|
| 3 |
-
#
|
| 4 |
-
# Licensed under the Apache License, Version 2.0 (the "License");
|
| 5 |
-
# you may not use this file except in compliance with the License.
|
| 6 |
-
# You may obtain a copy of the License at
|
| 7 |
-
#
|
| 8 |
-
# http://www.apache.org/licenses/LICENSE-2.0
|
| 9 |
-
#
|
| 10 |
-
# Unless required by applicable law or agreed to in writing, software
|
| 11 |
-
# distributed under the License is distributed on an "AS IS" BASIS,
|
| 12 |
-
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
| 13 |
-
# See the License for the specific language governing permissions and
|
| 14 |
-
# limitations under the License.
|
| 15 |
-
|
| 16 |
-
# Lint as: python3
|
| 17 |
-
"""LJ automatic speech recognition dataset."""
|
| 18 |
-
|
| 19 |
-
|
| 20 |
-
import csv
|
| 21 |
-
import os
|
| 22 |
-
|
| 23 |
-
import datasets
|
| 24 |
-
from datasets.tasks import AutomaticSpeechRecognition
|
| 25 |
-
|
| 26 |
-
|
| 27 |
-
_CITATION = """\
|
| 28 |
-
@misc{ljspeech17,
|
| 29 |
-
author = {Keith Ito and Linda Johnson},
|
| 30 |
-
title = {The LJ Speech Dataset},
|
| 31 |
-
howpublished = {\\url{https://keithito.com/LJ-Speech-Dataset/}},
|
| 32 |
-
year = 2017
|
| 33 |
-
}
|
| 34 |
-
"""
|
| 35 |
-
|
| 36 |
-
_DESCRIPTION = """\
|
| 37 |
-
This is a public domain speech dataset consisting of 13,100 short audio clips of a single speaker reading
|
| 38 |
-
passages from 7 non-fiction books in English. A transcription is provided for each clip. Clips vary in length
|
| 39 |
-
from 1 to 10 seconds and have a total length of approximately 24 hours.
|
| 40 |
-
|
| 41 |
-
Note that in order to limit the required storage for preparing this dataset, the audio
|
| 42 |
-
is stored in the .wav format and is not converted to a float32 array. To convert the audio
|
| 43 |
-
file to a float32 array, please make use of the `.map()` function as follows:
|
| 44 |
-
|
| 45 |
-
|
| 46 |
-
```python
|
| 47 |
-
import soundfile as sf
|
| 48 |
-
|
| 49 |
-
def map_to_array(batch):
|
| 50 |
-
speech_array, _ = sf.read(batch["file"])
|
| 51 |
-
batch["speech"] = speech_array
|
| 52 |
-
return batch
|
| 53 |
-
|
| 54 |
-
dataset = dataset.map(map_to_array, remove_columns=["file"])
|
| 55 |
-
```
|
| 56 |
-
"""
|
| 57 |
-
|
| 58 |
-
_URL = "https://keithito.com/LJ-Speech-Dataset/"
|
| 59 |
-
_DL_URL = "https://data.keithito.com/data/speech/LJSpeech-1.1.tar.bz2"
|
| 60 |
-
|
| 61 |
-
|
| 62 |
-
class LJSpeech(datasets.GeneratorBasedBuilder):
|
| 63 |
-
"""LJ Speech dataset."""
|
| 64 |
-
|
| 65 |
-
VERSION = datasets.Version("1.1.0")
|
| 66 |
-
|
| 67 |
-
BUILDER_CONFIGS = [
|
| 68 |
-
datasets.BuilderConfig(name="main", version=VERSION, description="The full LJ Speech dataset"),
|
| 69 |
-
]
|
| 70 |
-
|
| 71 |
-
def _info(self):
|
| 72 |
-
return datasets.DatasetInfo(
|
| 73 |
-
description=_DESCRIPTION,
|
| 74 |
-
features=datasets.Features(
|
| 75 |
-
{
|
| 76 |
-
"id": datasets.Value("string"),
|
| 77 |
-
"audio": datasets.Audio(sampling_rate=22050),
|
| 78 |
-
"file": datasets.Value("string"),
|
| 79 |
-
"text": datasets.Value("string"),
|
| 80 |
-
"normalized_text": datasets.Value("string"),
|
| 81 |
-
}
|
| 82 |
-
),
|
| 83 |
-
supervised_keys=("file", "text"),
|
| 84 |
-
homepage=_URL,
|
| 85 |
-
citation=_CITATION,
|
| 86 |
-
task_templates=[AutomaticSpeechRecognition(audio_column="audio", transcription_column="text")],
|
| 87 |
-
)
|
| 88 |
-
|
| 89 |
-
def _split_generators(self, dl_manager):
|
| 90 |
-
root_path = dl_manager.download_and_extract(_DL_URL)
|
| 91 |
-
root_path = os.path.join(root_path, "LJSpeech-1.1")
|
| 92 |
-
wav_path = os.path.join(root_path, "wavs")
|
| 93 |
-
csv_path = os.path.join(root_path, "metadata.csv")
|
| 94 |
-
|
| 95 |
-
return [
|
| 96 |
-
datasets.SplitGenerator(
|
| 97 |
-
name=datasets.Split.TRAIN, gen_kwargs={"wav_path": wav_path, "csv_path": csv_path}
|
| 98 |
-
),
|
| 99 |
-
]
|
| 100 |
-
|
| 101 |
-
def _generate_examples(self, wav_path, csv_path):
|
| 102 |
-
"""Generate examples from an LJ Speech archive_path."""
|
| 103 |
-
|
| 104 |
-
with open(csv_path, encoding="utf-8") as csv_file:
|
| 105 |
-
csv_reader = csv.reader(csv_file, delimiter="|", quotechar=None, skipinitialspace=True)
|
| 106 |
-
for row in csv_reader:
|
| 107 |
-
uid, text, norm_text = row
|
| 108 |
-
filename = f"{uid}.wav"
|
| 109 |
-
example = {
|
| 110 |
-
"id": uid,
|
| 111 |
-
"file": os.path.join(wav_path, filename),
|
| 112 |
-
"audio": os.path.join(wav_path, filename),
|
| 113 |
-
"text": text,
|
| 114 |
-
"normalized_text": norm_text,
|
| 115 |
-
}
|
| 116 |
-
yield uid, example
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|