|  | import datasets | 
					
						
						|  | from enum import Enum | 
					
						
						|  | from dataclasses import dataclass | 
					
						
						|  | from typing import List | 
					
						
						|  | import pandas as pd | 
					
						
						|  |  | 
					
						
						|  | logger = datasets.logging.get_logger(__name__) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | _CITATION = """\ | 
					
						
						|  | @dataset{gyodi_kristof_2021_4446043, | 
					
						
						|  | author       = {Gyódi, Kristóf and | 
					
						
						|  | Nawaro, Łukasz}, | 
					
						
						|  | title        = {{Determinants of Airbnb prices in European cities: | 
					
						
						|  | A spatial econometrics approach (Supplementary | 
					
						
						|  | Material)}}, | 
					
						
						|  | month        = jan, | 
					
						
						|  | year         = 2021, | 
					
						
						|  | note         = {{This research was supported by National Science | 
					
						
						|  | Centre, Poland: Project number 2017/27/N/HS4/00951}}, | 
					
						
						|  | publisher    = {Zenodo}, | 
					
						
						|  | doi          = {10.5281/zenodo.4446043}, | 
					
						
						|  | url          = {https://doi.org/10.5281/zenodo.4446043} | 
					
						
						|  | }""" | 
					
						
						|  |  | 
					
						
						|  | _DESCRIPTION = """\ | 
					
						
						|  | This dataset contains accommodation offers from the AirBnb platform from 10 European cities. | 
					
						
						|  | It has been copied from https://zenodo.org/record/4446043#.ZEV8d-zMI-R to make it available as a Huggingface Dataset. | 
					
						
						|  | It was originally published as supplementary material for the article: Determinants of Airbnb prices in European cities: A spatial econometrics approach | 
					
						
						|  | (DOI: https://doi.org/10.1016/j.tourman.2021.104319)""" | 
					
						
						|  |  | 
					
						
						|  | _CITIES = [ | 
					
						
						|  | "Amsterdam", | 
					
						
						|  | "Athens", | 
					
						
						|  | "Barcelona", | 
					
						
						|  | "Berlin", | 
					
						
						|  | "Budapest", | 
					
						
						|  | "Lisbon", | 
					
						
						|  | "London", | 
					
						
						|  | "Paris", | 
					
						
						|  | "Rome", | 
					
						
						|  | "Vienna" | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | _BASE_URL = "data/" | 
					
						
						|  | _URL_TEMPLATE = _BASE_URL + "{city}_{day_type}.csv" | 
					
						
						|  |  | 
					
						
						|  | class DayType(str, Enum): | 
					
						
						|  | WEEKDAYS = "weekdays" | 
					
						
						|  | WEEKENDS = "weekends" | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | @dataclass | 
					
						
						|  | class AirbnbFile: | 
					
						
						|  | """A file from the Airbnb dataset.""" | 
					
						
						|  |  | 
					
						
						|  | city: str | 
					
						
						|  | day_type: DayType | 
					
						
						|  | @property | 
					
						
						|  | def url(self) -> str: | 
					
						
						|  | return _URL_TEMPLATE.format(city=self.city.lower(), day_type=self.day_type.value) | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  |  | 
					
						
						|  | class AirbnbConfig(datasets.BuilderConfig): | 
					
						
						|  | """BuilderConfig for Airbnb.""" | 
					
						
						|  |  | 
					
						
						|  | def __init__(self, files: List[AirbnbFile], **kwargs): | 
					
						
						|  | """BuilderConfig for Airbnb. | 
					
						
						|  | Args: | 
					
						
						|  | **kwargs: keyword arguments forwarded to super. | 
					
						
						|  | """ | 
					
						
						|  | super(AirbnbConfig, self).__init__(**kwargs) | 
					
						
						|  | self.files = files | 
					
						
						|  |  | 
					
						
						|  | _WEEKDAY_FILES = [AirbnbFile(city=city, day_type=DayType.WEEKDAYS) for city in _CITIES] | 
					
						
						|  | _WEEKEND_FILES = [AirbnbFile(city=city, day_type=DayType.WEEKENDS) for city in _CITIES] | 
					
						
						|  |  | 
					
						
						|  | _DATASET_VERSION = "2.0.0" | 
					
						
						|  | class Airbnb(datasets.GeneratorBasedBuilder): | 
					
						
						|  | """""" | 
					
						
						|  |  | 
					
						
						|  | BUILDER_CONFIGS = [ | 
					
						
						|  | AirbnbConfig( | 
					
						
						|  | name=DayType.WEEKDAYS.value, | 
					
						
						|  | files=_WEEKDAY_FILES, | 
					
						
						|  | version=datasets.Version(_DATASET_VERSION), | 
					
						
						|  | ), | 
					
						
						|  | AirbnbConfig( | 
					
						
						|  | name=DayType.WEEKENDS.value, | 
					
						
						|  | files=_WEEKEND_FILES, | 
					
						
						|  | version=datasets.Version(_DATASET_VERSION), | 
					
						
						|  | ), | 
					
						
						|  | AirbnbConfig( | 
					
						
						|  | name="all", | 
					
						
						|  | files=_WEEKDAY_FILES + _WEEKEND_FILES, | 
					
						
						|  | version=datasets.Version(_DATASET_VERSION), | 
					
						
						|  | ), | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _info(self): | 
					
						
						|  | features = datasets.Features( | 
					
						
						|  | { | 
					
						
						|  | "_id": datasets.Value("string"), | 
					
						
						|  | "city": datasets.Value("string"), | 
					
						
						|  | "realSum": datasets.Value(dtype="float64"), | 
					
						
						|  | "room_type": datasets.Value(dtype="string"), | 
					
						
						|  | "room_shared": datasets.Value(dtype="bool"), | 
					
						
						|  | "room_private": datasets.Value(dtype="bool"), | 
					
						
						|  | "person_capacity": datasets.Value(dtype="float64"), | 
					
						
						|  | "host_is_superhost": datasets.Value(dtype="bool"), | 
					
						
						|  | "multi": datasets.Value(dtype="int64"), | 
					
						
						|  | "biz": datasets.Value(dtype="int64"), | 
					
						
						|  | "cleanliness_rating": datasets.Value(dtype="float64"), | 
					
						
						|  | "guest_satisfaction_overall": datasets.Value(dtype="float64"), | 
					
						
						|  | "bedrooms": datasets.Value(dtype="int64"), | 
					
						
						|  | "dist": datasets.Value(dtype="float64"), | 
					
						
						|  | "metro_dist": datasets.Value(dtype="float64"), | 
					
						
						|  | "attr_index": datasets.Value(dtype="float64"), | 
					
						
						|  | "attr_index_norm": datasets.Value(dtype="float64"), | 
					
						
						|  | "rest_index": datasets.Value(dtype="float64"), | 
					
						
						|  | "rest_index_norm": datasets.Value(dtype="float64"), | 
					
						
						|  | "lng": datasets.Value(dtype="float64"), | 
					
						
						|  | "lat": datasets.Value(dtype="float64") | 
					
						
						|  | }) | 
					
						
						|  | if self.config.name == "all": | 
					
						
						|  | features["day_type"] = datasets.Value(dtype="string") | 
					
						
						|  |  | 
					
						
						|  | return datasets.DatasetInfo( | 
					
						
						|  | description=_DESCRIPTION, | 
					
						
						|  | features=features, | 
					
						
						|  | supervised_keys=None, | 
					
						
						|  | homepage="https://zenodo.org/record/4446043#.ZEV8d-zMI-R", | 
					
						
						|  | citation=_CITATION, | 
					
						
						|  | ) | 
					
						
						|  |  | 
					
						
						|  | def _split_generators(self, dl_manager): | 
					
						
						|  | config_files: List[AirbnbFile] = self.config.files | 
					
						
						|  | urls = [file.url for file in config_files] | 
					
						
						|  | downloaded_files = dl_manager.download_and_extract(urls) | 
					
						
						|  |  | 
					
						
						|  | return [ | 
					
						
						|  | datasets.SplitGenerator(name=datasets.Split.TRAIN, gen_kwargs={"paths": downloaded_files}) | 
					
						
						|  | ] | 
					
						
						|  |  | 
					
						
						|  | def _generate_examples(self, paths: List[str]): | 
					
						
						|  | _id = 0 | 
					
						
						|  | config_files: List[AirbnbFile] = self.config.files | 
					
						
						|  | include_day_type = self.config.name == "all" | 
					
						
						|  | for file, path in zip(config_files, paths): | 
					
						
						|  | logger.info("generating examples from = %s", path) | 
					
						
						|  | df = pd.read_csv(path, index_col=0, header=0) | 
					
						
						|  | for row in df.itertuples(): | 
					
						
						|  | city = file.city | 
					
						
						|  | data = { | 
					
						
						|  | "_id": _id, | 
					
						
						|  | "city": city, | 
					
						
						|  | "realSum": row.realSum, | 
					
						
						|  | "room_type": row.room_type, | 
					
						
						|  | "room_shared": row.room_shared, | 
					
						
						|  | "room_private": row.room_private, | 
					
						
						|  | "person_capacity": row.person_capacity, | 
					
						
						|  | "host_is_superhost": row.host_is_superhost, | 
					
						
						|  | "multi": row.multi, | 
					
						
						|  | "biz": row.biz, | 
					
						
						|  | "cleanliness_rating": row.cleanliness_rating, | 
					
						
						|  | "guest_satisfaction_overall": row.guest_satisfaction_overall, | 
					
						
						|  | "bedrooms": row.bedrooms, | 
					
						
						|  | "dist": row.dist, | 
					
						
						|  | "metro_dist": row.metro_dist, | 
					
						
						|  | "attr_index": row.attr_index, | 
					
						
						|  | "attr_index_norm": row.attr_index_norm, | 
					
						
						|  | "rest_index": row.rest_index, | 
					
						
						|  | "rest_index_norm": row.rest_index_norm, | 
					
						
						|  | "lng": row.lng, | 
					
						
						|  | "lat": row.lat | 
					
						
						|  | } | 
					
						
						|  | if include_day_type: | 
					
						
						|  | data["day_type"] = file.day_type.value | 
					
						
						|  | yield _id, data | 
					
						
						|  | _id += 1 | 
					
						
						|  |  |