File size: 14,167 Bytes
bfb21c3 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 |
"""
@author: chkarada
"""
# Note that this file picks the clean speech files randomly, so it does not guarantee that all
# source files will be used
import os
import glob
import argparse
import ast
import configparser as CP
from itertools import repeat
import multiprocessing
from multiprocessing import Pool
import random
from random import shuffle
import librosa
import numpy as np
from audiolib import is_clipped, audioread, audiowrite, snr_mixer, activitydetector
import utils
PROCESSES = multiprocessing.cpu_count()
MAXTRIES = 50
MAXFILELEN = 100
np.random.seed(2)
random.seed(3)
clean_counter = None
noise_counter = None
def init(args1, args2):
''' store the counter for later use '''
global clean_counter, noise_counter
clean_counter = args1
noise_counter = args2
def build_audio(is_clean, params, filenum, audio_samples_length=-1):
'''Construct an audio signal from source files'''
fs_output = params['fs']
silence_length = params['silence_length']
if audio_samples_length == -1:
audio_samples_length = int(params['audio_length']*params['fs'])
output_audio = np.zeros(0)
remaining_length = audio_samples_length
files_used = []
clipped_files = []
global clean_counter, noise_counter
if is_clean:
source_files = params['cleanfilenames']
idx_counter = clean_counter
else:
source_files = params['noisefilenames']
idx_counter = noise_counter
# initialize silence
silence = np.zeros(int(fs_output*silence_length))
# iterate through multiple clips until we have a long enough signal
tries_left = MAXTRIES
while remaining_length > 0 and tries_left > 0:
# read next audio file and resample if necessary
with idx_counter.get_lock():
idx_counter.value += 1
idx = idx_counter.value % np.size(source_files)
input_audio, fs_input = audioread(source_files[idx])
if fs_input != fs_output:
input_audio = librosa.resample(input_audio, fs_input, fs_output)
# if current file is longer than remaining desired length, and this is
# noise generation or this is training set, subsample it randomly
if len(input_audio) > remaining_length and (not is_clean or not params['is_test_set']):
idx_seg = np.random.randint(0, len(input_audio)-remaining_length)
input_audio = input_audio[idx_seg:idx_seg+remaining_length]
# check for clipping, and if found move onto next file
if is_clipped(input_audio):
clipped_files.append(source_files[idx])
tries_left -= 1
continue
# concatenate current input audio to output audio stream
files_used.append(source_files[idx])
output_audio = np.append(output_audio, input_audio)
remaining_length -= len(input_audio)
# add some silence if we have not reached desired audio length
if remaining_length > 0:
silence_len = min(remaining_length, len(silence))
output_audio = np.append(output_audio, silence[:silence_len])
remaining_length -= silence_len
if tries_left == 0:
print("Audio generation failed for filenum " + str(filenum))
return [], [], clipped_files
return output_audio, files_used, clipped_files
def gen_audio(is_clean, params, filenum, audio_samples_length=-1):
'''Calls build_audio() to get an audio signal, and verify that it meets the
activity threshold'''
clipped_files = []
low_activity_files = []
if audio_samples_length == -1:
audio_samples_length = int(params['audio_length']*params['fs'])
if is_clean:
activity_threshold = params['clean_activity_threshold']
else:
activity_threshold = params['noise_activity_threshold']
while True:
audio, source_files, new_clipped_files = \
build_audio(is_clean, params, filenum, audio_samples_length)
clipped_files += new_clipped_files
if len(audio) < audio_samples_length:
continue
if activity_threshold == 0.0:
break
percactive = activitydetector(audio=audio)
if percactive > activity_threshold:
break
else:
low_activity_files += source_files
return audio, source_files, clipped_files, low_activity_files
def main_gen(params, filenum):
'''Calls gen_audio() to generate the audio signals, verifies that they meet
the requirements, and writes the files to storage'''
print("Generating file #" + str(filenum))
clean_clipped_files = []
clean_low_activity_files = []
noise_clipped_files = []
noise_low_activity_files = []
while True:
# generate clean speech
clean, clean_source_files, clean_cf, clean_laf = \
gen_audio(True, params, filenum)
# generate noise
noise, noise_source_files, noise_cf, noise_laf = \
gen_audio(False, params, filenum, len(clean))
clean_clipped_files += clean_cf
clean_low_activity_files += clean_laf
noise_clipped_files += noise_cf
noise_low_activity_files += noise_laf
# mix clean speech and noise
# if specified, use specified SNR value
if not params['randomize_snr']:
snr = params['snr']
# use a randomly sampled SNR value between the specified bounds
else:
snr = np.random.randint(params['snr_lower'], params['snr_upper'])
clean_snr, noise_snr, noisy_snr, target_level = snr_mixer(params=params,
clean=clean,
noise=noise,
snr=snr)
# Uncomment the below lines if you need segmental SNR and comment the above lines using snr_mixer
#clean_snr, noise_snr, noisy_snr, target_level = segmental_snr_mixer(params=params,
# clean=clean,
# noise=noise,
# snr=snr)
# unexpected clipping
if is_clipped(clean_snr) or is_clipped(noise_snr) or is_clipped(noisy_snr):
continue
else:
break
# write resultant audio streams to files
hyphen = '-'
clean_source_filenamesonly = [i[:-4].split(os.path.sep)[-1] for i in clean_source_files]
clean_files_joined = hyphen.join(clean_source_filenamesonly)[:MAXFILELEN]
noise_source_filenamesonly = [i[:-4].split(os.path.sep)[-1] for i in noise_source_files]
noise_files_joined = hyphen.join(noise_source_filenamesonly)[:MAXFILELEN]
noisyfilename = clean_files_joined + '_' + noise_files_joined + '_snr' + \
str(snr) + '_fileid_' + str(filenum) + '.wav'
cleanfilename = 'clean_fileid_'+str(filenum)+'.wav'
noisefilename = 'noise_fileid_'+str(filenum)+'.wav'
noisypath = os.path.join(params['noisyspeech_dir'], noisyfilename)
cleanpath = os.path.join(params['clean_proc_dir'], cleanfilename)
noisepath = os.path.join(params['noise_proc_dir'], noisefilename)
audio_signals = [noisy_snr, clean_snr, noise_snr]
file_paths = [noisypath, cleanpath, noisepath]
for i in range(len(audio_signals)):
try:
audiowrite(file_paths[i], audio_signals[i], params['fs'])
except Exception as e:
print(str(e))
pass
return clean_source_files, clean_clipped_files, clean_low_activity_files, \
noise_source_files, noise_clipped_files, noise_low_activity_files
def extract_list(input_list, index):
output_list = [i[index] for i in input_list]
flat_output_list = [item for sublist in output_list for item in sublist]
flat_output_list = sorted(set(flat_output_list))
return flat_output_list
def main_body():
'''Main body of this file'''
parser = argparse.ArgumentParser()
# Configurations: read noisyspeech_synthesizer.cfg and gather inputs
parser.add_argument('--cfg', default='noisyspeech_synthesizer.cfg',
help='Read noisyspeech_synthesizer.cfg for all the details')
parser.add_argument('--cfg_str', type=str, default='noisy_speech')
args = parser.parse_args()
params = dict()
params['args'] = args
cfgpath = os.path.join(os.path.dirname(__file__), args.cfg)
assert os.path.exists(cfgpath), f'No configuration file as [{cfgpath}]'
cfg = CP.ConfigParser()
cfg._interpolation = CP.ExtendedInterpolation()
cfg.read(cfgpath)
params['cfg'] = cfg._sections[args.cfg_str]
cfg = params['cfg']
clean_dir = os.path.join(os.path.dirname(__file__), 'CleanSpeech')
if cfg['speech_dir'] != 'None':
clean_dir = cfg['speech_dir']
if not os.path.exists(clean_dir):
assert False, ('Clean speech data is required')
noise_dir = os.path.join(os.path.dirname(__file__), 'Noise')
if cfg['noise_dir'] != 'None':
noise_dir = cfg['noise_dir']
if not os.path.exists(noise_dir):
assert False, ('Noise data is required')
params['fs'] = int(cfg['sampling_rate'])
params['audioformat'] = cfg['audioformat']
params['audio_length'] = float(cfg['audio_length'])
params['silence_length'] = float(cfg['silence_length'])
params['total_hours'] = float(cfg['total_hours'])
if cfg['fileindex_start'] != 'None' and cfg['fileindex_start'] != 'None':
params['fileindex_start'] = int(cfg['fileindex_start'])
params['fileindex_end'] = int(cfg['fileindex_end'])
params['num_files'] = int(params['fileindex_end'])-int(params['fileindex_start'])
else:
params['num_files'] = int((params['total_hours']*60*60)/params['audio_length'])
print('Number of files to be synthesized:', params['num_files'])
params['is_test_set'] = utils.str2bool(cfg['is_test_set'])
params['clean_activity_threshold'] = float(cfg['clean_activity_threshold'])
params['noise_activity_threshold'] = float(cfg['noise_activity_threshold'])
params['snr_lower'] = int(cfg['snr_lower'])
params['snr_upper'] = int(cfg['snr_upper'])
params['randomize_snr'] = utils.str2bool(cfg['randomize_snr'])
params['target_level_lower'] = int(cfg['target_level_lower'])
params['target_level_upper'] = int(cfg['target_level_upper'])
if 'snr' in cfg.keys():
params['snr'] = int(cfg['snr'])
else:
params['snr'] = int((params['snr_lower'] + params['snr_upper'])/2)
params['noisyspeech_dir'] = utils.get_dir(cfg, 'noisy_destination', 'noisy')
params['clean_proc_dir'] = utils.get_dir(cfg, 'clean_destination', 'clean')
params['noise_proc_dir'] = utils.get_dir(cfg, 'noise_destination', 'noise')
if 'speech_csv' in cfg.keys() and cfg['speech_csv'] != 'None':
cleanfilenames = pd.read_csv(cfg['speech_csv'])
cleanfilenames = cleanfilenames['filename']
else:
cleanfilenames = glob.glob(os.path.join(clean_dir, params['audioformat']))
params['cleanfilenames'] = cleanfilenames
shuffle(params['cleanfilenames'])
params['num_cleanfiles'] = len(params['cleanfilenames'])
params['noisefilenames'] = glob.glob(os.path.join(noise_dir, params['audioformat']))
shuffle(params['noisefilenames'])
# Invoke multiple processes and fan out calls to main_gen() to these processes
global clean_counter, noise_counter
clean_counter = multiprocessing.Value('i', 0)
noise_counter = multiprocessing.Value('i', 0)
multi_pool = multiprocessing.Pool(processes=PROCESSES, initializer = init, initargs = (clean_counter, noise_counter, ))
fileindices = range(params['num_files'])
output_lists = multi_pool.starmap(main_gen, zip(repeat(params), fileindices))
flat_output_lists = []
num_lists = 6
for i in range(num_lists):
flat_output_lists.append(extract_list(output_lists, i))
# Create log directory if needed, and write log files of clipped and low activity files
log_dir = utils.get_dir(cfg, 'log_dir', 'Logs')
utils.write_log_file(log_dir, 'source_files.csv', flat_output_lists[0] + flat_output_lists[3])
utils.write_log_file(log_dir, 'clipped_files.csv', flat_output_lists[1] + flat_output_lists[4])
utils.write_log_file(log_dir, 'low_activity_files.csv', flat_output_lists[2] + flat_output_lists[5])
# Compute and print stats about percentange of clipped and low activity files
total_clean = len(flat_output_lists[0]) + len(flat_output_lists[1]) + len(flat_output_lists[2])
total_noise = len(flat_output_lists[3]) + len(flat_output_lists[4]) + len(flat_output_lists[5])
pct_clean_clipped = round(len(flat_output_lists[1])/total_clean*100, 1)
pct_noise_clipped = round(len(flat_output_lists[4])/total_noise*100, 1)
pct_clean_low_activity = round(len(flat_output_lists[2])/total_clean*100, 1)
pct_noise_low_activity = round(len(flat_output_lists[5])/total_noise*100, 1)
print("Of the " + str(total_clean) + " clean speech files analyzed, " + str(pct_clean_clipped) + \
"% had clipping, and " + str(pct_clean_low_activity) + "% had low activity " + \
"(below " + str(params['clean_activity_threshold']*100) + "% active percentage)")
print("Of the " + str(total_noise) + " noise files analyzed, " + str(pct_noise_clipped) + \
"% had clipping, and " + str(pct_noise_low_activity) + "% had low activity " + \
"(below " + str(params['noise_activity_threshold']*100) + "% active percentage)")
if __name__ == '__main__':
main_body()
|