|
|
|
|
|
"""
|
|
|
Functions for audio featurization.
|
|
|
"""
|
|
|
|
|
|
import os
|
|
|
import math
|
|
|
import logging
|
|
|
|
|
|
import numpy as np
|
|
|
import soundfile as sf
|
|
|
import librosa
|
|
|
|
|
|
SIGMA_EPS = 1e-12
|
|
|
|
|
|
|
|
|
def stft(frame, _sr, wind, _hop, nfft, synth=False, zphase=False):
|
|
|
if not zphase:
|
|
|
return np.fft.rfft(frame, n=nfft)
|
|
|
fsize = len(wind)
|
|
|
woff = (fsize - (fsize % 2)) // 2
|
|
|
zp = np.zeros(nfft - fsize)
|
|
|
return np.fft.rfft(np.concatenate((frame[woff:], zp, frame[:woff])))
|
|
|
|
|
|
|
|
|
def istft(frame, _sr, wind, nfft, zphase=False):
|
|
|
frame = np.fft.irfft(frame, nfft)
|
|
|
if zphase:
|
|
|
fsize = len(wind)
|
|
|
frame = np.roll(frame, (fsize - (fsize % 2)) // 2)[:fsize]
|
|
|
return frame
|
|
|
|
|
|
|
|
|
def onlineMVN_perframe(
|
|
|
frame_feature, frame_counter, mu, sigmasquare,
|
|
|
frameshift=0.01, tauFeat=3., tauFeatInit=0.1, t_init=0.1):
|
|
|
"""Online mean and variance normalization (per frequency)"""
|
|
|
|
|
|
n_init_frames = math.ceil(t_init / frameshift)
|
|
|
alpha_feat_init = math.exp(-frameshift / tauFeatInit)
|
|
|
alpha_feat = math.exp(-frameshift / tauFeat)
|
|
|
|
|
|
if frame_counter < n_init_frames:
|
|
|
alpha = alpha_feat_init
|
|
|
else:
|
|
|
alpha = alpha_feat
|
|
|
|
|
|
mu = alpha * mu + (1 - alpha) * frame_feature
|
|
|
sigmasquare = alpha * sigmasquare + (1 - alpha) * frame_feature**2
|
|
|
sigma = np.sqrt(np.maximum(sigmasquare - mu**2, SIGMA_EPS))
|
|
|
norm_feature = (frame_feature - mu) / sigma
|
|
|
frame_counter += 1
|
|
|
|
|
|
return norm_feature, mu, sigmasquare, frame_counter
|
|
|
|
|
|
|
|
|
def magphasor(complexspec):
|
|
|
"""Decompose a complex spectrogram into magnitude and unit phasor.
|
|
|
m, p = magphasor(c) such that c == m * p.
|
|
|
"""
|
|
|
mspec = np.abs(complexspec)
|
|
|
pspec = np.empty_like(complexspec)
|
|
|
zero_mag = mspec == 0.
|
|
|
pspec[zero_mag] = 1.
|
|
|
pspec[~zero_mag] = complexspec[~zero_mag] / mspec[~zero_mag]
|
|
|
return mspec, pspec
|
|
|
|
|
|
|
|
|
def logpow(sig, floor=-30.):
|
|
|
"""Compute log power of complex spectrum.
|
|
|
|
|
|
Floor any -`np.inf` value to (nonzero minimum + `floor`) dB.
|
|
|
If all values are 0s, floor all values to -80 dB.
|
|
|
"""
|
|
|
log10e = np.log10(np.e)
|
|
|
pspec = sig.real**2 + sig.imag**2
|
|
|
zeros = pspec == 0
|
|
|
logp = np.empty_like(pspec)
|
|
|
if np.any(~zeros):
|
|
|
logp[~zeros] = np.log(pspec[~zeros])
|
|
|
logp[zeros] = np.log(pspec[~zeros].min()) + floor / 10 / log10e
|
|
|
else:
|
|
|
logp.fill(-80 / 10 / log10e)
|
|
|
|
|
|
return logp
|
|
|
|
|
|
|
|
|
def hamming(wsize, hop=None):
|
|
|
"Compute the Hamming window"
|
|
|
|
|
|
if hop is None:
|
|
|
return np.hamming(wsize)
|
|
|
|
|
|
|
|
|
if wsize % 2:
|
|
|
wind = np.hamming(wsize)
|
|
|
wind[0] /= 2.
|
|
|
wind[-1] /= 2.
|
|
|
else:
|
|
|
wind = np.hamming(wsize + 1)
|
|
|
wind = wind[:-1]
|
|
|
|
|
|
assert tnorm(wind, hop), \
|
|
|
"[wsize:{}, hop:{}] violates COLA in time.".format(wsize, hop)
|
|
|
|
|
|
return wind
|
|
|
|
|
|
|
|
|
def tnorm(wind, hop):
|
|
|
amp = tcola(wind, hop)
|
|
|
if amp is None:
|
|
|
return False
|
|
|
wind /= amp
|
|
|
return True
|
|
|
|
|
|
|
|
|
def tcola(wind, _hop):
|
|
|
wsize = len(wind)
|
|
|
hsize = 160
|
|
|
buff = wind.copy()
|
|
|
for wi in range(hsize, wsize, hsize):
|
|
|
wj = wi + wsize
|
|
|
buff[wi:] += wind[:wsize - wi]
|
|
|
for wj in range(wsize - hsize, 0, -hsize):
|
|
|
wi = wj - wsize
|
|
|
buff[:wj] += wind[wsize - wj:]
|
|
|
|
|
|
if np.allclose(buff, buff[0]):
|
|
|
return buff[0]
|
|
|
|
|
|
return None
|
|
|
|
|
|
|
|
|
def audioread(path, sr=None, start=0, stop=None, mono=True, norm=False):
|
|
|
|
|
|
path = os.path.abspath(path)
|
|
|
if not os.path.exists(path):
|
|
|
logging.error('File does not exist: %s', path)
|
|
|
raise ValueError("[{}] does not exist!".format(path))
|
|
|
|
|
|
try:
|
|
|
x, xsr = sf.read(path, start=start, stop=stop)
|
|
|
except RuntimeError:
|
|
|
logging.warning('Audio type not supported for file %s. Trying sph2pipe...', path)
|
|
|
|
|
|
if len(x.shape) == 1:
|
|
|
if sr and xsr != sr:
|
|
|
print("Resampling to sampling rate:", sr)
|
|
|
x = librosa.resample(x, xsr, sr)
|
|
|
xsr = sr
|
|
|
if norm:
|
|
|
print("Normalization input data")
|
|
|
x /= np.max(np.abs(x))
|
|
|
return x, xsr
|
|
|
|
|
|
|
|
|
x = x.T
|
|
|
if sr and xsr != sr:
|
|
|
x = librosa.resample(x, xsr, sr, axis=1)
|
|
|
xsr = sr
|
|
|
if mono:
|
|
|
x = x.sum(axis=0) / x.shape[0]
|
|
|
if norm:
|
|
|
for chan in range(x.shape[0]):
|
|
|
x[chan, :] /= np.max(np.abs(x[chan, :]))
|
|
|
|
|
|
return x, xsr
|
|
|
|
|
|
|
|
|
def audiowrite(data, sr, outpath, norm=False):
|
|
|
|
|
|
logging.debug("Writing to: %s", outpath)
|
|
|
|
|
|
if np.max(np.abs(data)) == 0:
|
|
|
logging.warning("All-zero output! Something is not quite right,"
|
|
|
" check your input audio clip and model.")
|
|
|
|
|
|
outpath = os.path.abspath(outpath)
|
|
|
outdir = os.path.dirname(outpath)
|
|
|
|
|
|
if not os.path.exists(outdir):
|
|
|
os.makedirs(outdir)
|
|
|
|
|
|
sf.write(outpath, data, sr)
|
|
|
|