ltnghia's picture
Add files using upload-large-folder tool
bfb21c3 verified
# -*- coding: utf-8 -*-
"""
Functions for audio featurization.
"""
import os
import math
import logging
import numpy as np
import soundfile as sf
import librosa
SIGMA_EPS = 1e-12
def stft(frame, _sr, wind, _hop, nfft, synth=False, zphase=False):
if not zphase:
return np.fft.rfft(frame, n=nfft)
fsize = len(wind)
woff = (fsize - (fsize % 2)) // 2
zp = np.zeros(nfft - fsize)
return np.fft.rfft(np.concatenate((frame[woff:], zp, frame[:woff])))
def istft(frame, _sr, wind, nfft, zphase=False):
frame = np.fft.irfft(frame, nfft)
if zphase:
fsize = len(wind)
frame = np.roll(frame, (fsize - (fsize % 2)) // 2)[:fsize]
return frame
def onlineMVN_perframe(
frame_feature, frame_counter, mu, sigmasquare,
frameshift=0.01, tauFeat=3., tauFeatInit=0.1, t_init=0.1):
"""Online mean and variance normalization (per frequency)"""
n_init_frames = math.ceil(t_init / frameshift)
alpha_feat_init = math.exp(-frameshift / tauFeatInit)
alpha_feat = math.exp(-frameshift / tauFeat)
if frame_counter < n_init_frames:
alpha = alpha_feat_init
else:
alpha = alpha_feat
mu = alpha * mu + (1 - alpha) * frame_feature
sigmasquare = alpha * sigmasquare + (1 - alpha) * frame_feature**2
sigma = np.sqrt(np.maximum(sigmasquare - mu**2, SIGMA_EPS)) # limit for sqrt
norm_feature = (frame_feature - mu) / sigma
frame_counter += 1
return norm_feature, mu, sigmasquare, frame_counter
def magphasor(complexspec):
"""Decompose a complex spectrogram into magnitude and unit phasor.
m, p = magphasor(c) such that c == m * p.
"""
mspec = np.abs(complexspec)
pspec = np.empty_like(complexspec)
zero_mag = mspec == 0. # fix zero-magnitude
pspec[zero_mag] = 1.
pspec[~zero_mag] = complexspec[~zero_mag] / mspec[~zero_mag]
return mspec, pspec
def logpow(sig, floor=-30.):
"""Compute log power of complex spectrum.
Floor any -`np.inf` value to (nonzero minimum + `floor`) dB.
If all values are 0s, floor all values to -80 dB.
"""
log10e = np.log10(np.e)
pspec = sig.real**2 + sig.imag**2
zeros = pspec == 0
logp = np.empty_like(pspec)
if np.any(~zeros):
logp[~zeros] = np.log(pspec[~zeros])
logp[zeros] = np.log(pspec[~zeros].min()) + floor / 10 / log10e
else:
logp.fill(-80 / 10 / log10e)
return logp
def hamming(wsize, hop=None):
"Compute the Hamming window"
if hop is None:
return np.hamming(wsize)
# For perfect OLA reconstruction in time
if wsize % 2: # Fix endpoint problem for odd-size window
wind = np.hamming(wsize)
wind[0] /= 2.
wind[-1] /= 2.
else: # even-size window
wind = np.hamming(wsize + 1)
wind = wind[:-1]
assert tnorm(wind, hop), \
"[wsize:{}, hop:{}] violates COLA in time.".format(wsize, hop)
return wind
def tnorm(wind, hop):
amp = tcola(wind, hop)
if amp is None:
return False
wind /= amp
return True
def tcola(wind, _hop):
wsize = len(wind)
hsize = 160
buff = wind.copy() # holds OLA buffer and account for time=0
for wi in range(hsize, wsize, hsize): # window moving forward
wj = wi + wsize
buff[wi:] += wind[:wsize - wi]
for wj in range(wsize - hsize, 0, -hsize): # window moving backward
wi = wj - wsize
buff[:wj] += wind[wsize - wj:]
if np.allclose(buff, buff[0]):
return buff[0]
return None
def audioread(path, sr=None, start=0, stop=None, mono=True, norm=False):
path = os.path.abspath(path)
if not os.path.exists(path):
logging.error('File does not exist: %s', path)
raise ValueError("[{}] does not exist!".format(path))
try:
x, xsr = sf.read(path, start=start, stop=stop)
except RuntimeError: # fix for sph pcm-embedded shortened v2
logging.warning('Audio type not supported for file %s. Trying sph2pipe...', path)
if len(x.shape) == 1: # mono
if sr and xsr != sr:
print("Resampling to sampling rate:", sr)
x = librosa.resample(x, xsr, sr)
xsr = sr
if norm:
print("Normalization input data")
x /= np.max(np.abs(x))
return x, xsr
# multi-channel
x = x.T
if sr and xsr != sr:
x = librosa.resample(x, xsr, sr, axis=1)
xsr = sr
if mono:
x = x.sum(axis=0) / x.shape[0]
if norm:
for chan in range(x.shape[0]):
x[chan, :] /= np.max(np.abs(x[chan, :]))
return x, xsr
def audiowrite(data, sr, outpath, norm=False):
logging.debug("Writing to: %s", outpath)
if np.max(np.abs(data)) == 0: # in case all entries are 0s
logging.warning("All-zero output! Something is not quite right,"
" check your input audio clip and model.")
outpath = os.path.abspath(outpath)
outdir = os.path.dirname(outpath)
if not os.path.exists(outdir):
os.makedirs(outdir)
sf.write(outpath, data, sr)